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Preface

The future of data science and artificial intelligence has never looked
brighter. AI now beats humans at games ranging from twitchy,
reflexive Pong to deep, contemplative Go. Deep learning models
recognize objects nearly as well as humans. Some even say self-
driving cars perform better than their distracted human counterparts.
The past decade’s massive gains in data volume, storage capacity, and
computing power have enabled rapid advances in data science.

And of course technology has spread into every facet of your
business (from finance and sales to production and logistics).
However, is each part of your business turbocharged by data science
and AI? Likely not. As wonderful as they might be, if you are not
designing a self-driving car or predicting customer behavior, you are
probably not using these technologies.

Many organizations may have access to business data from an
enterprise resource planning (ERP) system such as SAP, and yours is
likely no different. Data coming from a business system such as SAP
is largely perfect as often validations and checks are in place before it
is allowed to save to the database (and, one of the most essential and
least rewarding tasks of a data scientist is cleaning the data). This
means ERP data in SAP is ripe for the picking, and data science is
here to do the harvesting!



Let’s take a hypothetical scenario. The SAP Team at Big Bonanza
Warehouse is in a constant state of process improvement. They know
how to configure their SAP system to do the tasks their users want,
and they play that system like a fiddle, dutifully taking requests and
delivering solutions. However, there is a bit of a problem with
reporting and analytics; they have a data warehouse and a business
intelligence system, but developing reports is a multimonth process.
The team often resorts to using standard ALV (ABAP List Viewer)
reports, which are quite limited in power because they require a
developer to code; in addition, it is very hard to harness the wealth of
public data that could be used in conjunction with SAP. Just like at
countless other enterprises, SAP data at Big Bonanza Warehouse is
an island, siloed within its own system. Teams that don’t work with
SAP have no idea what’s in there, and the teams that do work with it
spend so much time maintaining the systems that they don’t get the
chance to look outside them.

SAP data shouldn’t be an island, though. The team knows their data,
how to find it, and what they want to do with it. However, when it
comes to analyzing that data, everyone’s hands are tied by that
multimonth report development process.

Sound familiar? It’s the story at nearly every SAP shop with whom
we’ve ever worked. And that’s a lot in our combined 30+ years of
experience.

We want to give that SAP team (and yours!) some modern insight—
tools and techniques they can use without defining data cubes, data
warehouse objects, or learning complex frontend reports. In this



book, we’ll present simple scenarios such as dumping data straight
out of SAP into a flat file and into a reporting tool. This is useful for
ad-hoc reporting and investigations. We’ll also consider more
complex scenarios, including using extractor tools and neural
network models in the cloud to analyze data in ways not possible
within SAP or contemporary data warehouses.

How to Read This Book
You’ll need to approach this book from a conceptual point of view.
We present alternative techniques for analyzing business data.We ask
—nay, we beg—the reader to think about business data (in particular
SAP data) in new and interesting ways. This book is designed to
awaken ideas around how to bridge the gap between your particular
business data and the advances in data science. You need not be an
expert in the complex algorithms that calculate gradient descent in a
neural network, nor do you need to be an expert in your business
data. But you do need to have a desire to straddle these two camps
and have fun in the process.

From the data scientist’s perspective, the data science principles in
this book are an introduction. If you can spot a sigmoid, tanh, or relu
activation function at fifty paces, you can skip those parts. But we’re
betting that if your guru level is that high in data science, you’re a
novice at the SAP stuff. Focus in on the SAP stories, showing you
how to pull things out and demonstrating working with the real
business data in the system.
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From the SAP professional’s perspective, you’ll break out of
traditional reporting and analytics models. You’ll learn to think of
business applications and reporting in machine and deep learning
terms. This may sound mystical, but by the end of the book you will
have the tools necessary to take this step. Along the way you’ll
automatically detect anomalies in sales data, predict the future from
past data, process text as natural language, segment customers into
smart groups, visualize all these things brilliantly, and teach bots to
use business data.

In our world of AI and data science, asking the same old questions of
your data is stale, naive, and (quite frankly) boring. We want you to
ask questions of your data that you didn’t even know you could ask.
Maybe the price of tea in China really does have an outsize effect on
your sales.

From the developer’s perspective, you’ll be inspired to learn
wonderful programming languages like Python and R. We don’t teach
you these languages, but we challenge you to dip your toe into these
warm and effervescent waters. If you are already an experienced R or
Python developer, you’re in good shape for the code sections. For the
novice, we will point you to resources to get you started. Don’t feel
left out if you are inclined to use another language such as Java. The
“meta” goal of this book is to get you to think of how to think of
business data differently and if that means you want to use Java, by
all means do so.

Operationalizing data science is a whole book in itself. We’ll
frequently touch on how to operationalize ideas we present, but it is



beyond the scope of this book to dive deep on creating robust
pipelines.

TIP
Data scientists may be able to skip over Chapter 2. SAP professionals, you
might be able to skip Chapter 3. The stories we tell later in the book merge
these two disciplines, so we want readers who come from one or the other side
to get a fair understanding of how we’ll be poking around to work our magic.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.



TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your
product’s documentation does require permission.



We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example:
“Practical Data Science with SAP by Greg Foss and Paul
Modderman (O’Reilly). Copyright 2019 Greg Foss and Paul
Modderman, 978-1-492-04644-8.” 

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For almost 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, conferences, and our online
learning platform. O’Reilly’s online learning platform gives you on-
demand access to live training courses, in-depth learning paths,
interactive coding environments, and a vast collection of text and
video from O’Reilly and 200+ other publishers. For more
information, please visit http://oreilly.com.

How to Contact Us

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/


Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at
https://oreil.ly/practical-data-sci-sap.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

https://oreil.ly/practical-data-sci-sap
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Chapter 1. Introduction

Telling Better Stories with Data
Not enough gets said about abandoning crap.

—Ira Glass

We’ve all seen them. The intimidating PowerPoint presentations with
the army of bullet points marching down the screen. Often the
lecturer will even apologize for the busy slide and then continue to
present, reading every word on the slide exactly as printed. You start
to wonder if you left the oven on last night. We all like stories. A
well-constructed narrative in the form of a movie, book, television
show, or podcast wraps around us like a blanket and draws our
attention. The bullet-ridden PowerPoint…not so much. With the
deluge of data that has come with the advent of the internet and IoT,
we are tempted to splash some findings in a presentation, wipe our
hands, and say “that is that.” However, as data professionals we can’t
just rain data findings down on our audience. The prevailing advice is
that you must tell a story with data—make sure it’s a compelling
story that people want to hear. Don’t deny yourself the joy that
storytelling can bring.

To tell a compelling story, you must identify it. What is being asked
of my data? What insights are my users looking for? A company that
specializes in providing services and equipment might ask, “What
equipment needs servicing the most? The least? Is there a correlation



between equipment type and parts replacement?” At that same
company someone in the finance department might ask, “How can we
more accurately predict cash-on-hand?” In sales the question might
be, “What kind of customer churn do I have?”

After you’ve identified your story, you’ll need to find your audience.
There are many ways to break them down, but generally your
audience includes executives, business professionals, and technical
professionals. While they might manage or direct many business
processes, executives often know little about the daily functioning of
such processes. The detail is irrelevant (or possibly confusing) to
them—they want to know the story in big bold letters. Business
professionals are the daily administrators of a business process, such
as super users and business analysts. They know the process in detail
and can understand raw tabular data. Technical professionals are the
smallest segment of your audience; they usually comprise colleagues
in data analytics and data science teams. This group requires less
business and process background and more technical details such as
the root-mean-squared error of the regression or the architecture of
the neural network.

Once you’ve got your story and audience set, you’ll need to move
forward with the most difficult and tenuous part of the journey:
finding the data. Without the data to support your story, your journey
will quickly come to an end. Let’s say you wanted to tell the story of
how sunspots correlate to sales of hats and mittens in the northern
hemisphere. Surprisingly, sunspot data is easy to obtain. You got that.
However, you only have details on sales of hats, not mittens. You
can’t find that data. A cautious step is needed here. Do you alter your



story to fit the data or do you cut bait and find another story?
Reversing the process can be done but it’s a slippery slope. As a
general rule, do not change your hypothesis to match your data.

Before you fully trust that data, you’ll need to vet it and start asking a
lot of questions:

Is the source reputable? Did you scrape the data from a table on a
website? What sources did that website use for the data, and how was
it obtained? Sources such as Data.gov, ProPublica, the US Census
Bureau, and GapMinder are trustworthy, but others might need a dash
of caution.

Do you have too much data? Are there easily recognizable, worthless
features? Look for features that are obviously precisely correlated. In
the sunspot data mentioned earlier, perhaps you have a UTC
timestamp feature and two other features for date and time. Either the
date and time should be thrown out or the timestamp. You can
quickly look at correlations using techniques we will discuss later to
help you identify when two features are too closely correlated for
both of them to be useful.

Is the data complete? Use some preliminary data tools to make sure
your data is not missing too much information. We’ll discuss this
process in more detail later.

With the story in place, the audience identified, and the data vetted,
what’s next? You’re now ready for the art and fun of the story—
identifying what tools to use to either support or reject your null



hypothesis. To say you’re using “data science” as a tool is a slippery
slope. You have advanced reporting, machine learning, and deep
learning in your arsenal. Often, just the organization of the data into
an easy-to-use dashboard tells the whole story. Nothing more needs to
be done. As deflating as that has been in our careers, it has happened
more times than any other scenario. We start the journey thinking that
we have a case for a recursive neural network with either a gated
recurrent unit or a long short-term memory module. And the
excitement builds while we’re gathering the data. Then we realize a
support vector machine or a simple regression would do just as well.
Later, with not a little disappointment, we realize that a dashboard for
users to explore the data is more than enough to tell the story. Not
everything requires deep or even machine learning. Although it can
often be entertaining, shoehorning your story into these paradigms
often does not tell the story any better.

Finally, take a little time to learn a bit about the art of storytelling.
Even our dry data science stories deserve some love and attention. Ira
Glass is a fantastic storyteller. He has a series of four short videos on
the art of storytelling. Watch them and sprinkle some of his sage
advice into your story.

A Quick Look: Data Science for SAP
Professionals
SAP professionals are busy every day supporting the business and
users, constantly looking for process improvements. They gather
requirements, configure or code in the SAP system, and, more often

https://www.youtube.com/watch?v=f6ezU57J8YI


than not, live in the SAP GUI. They have intimate knowledge of the
data within SAP as well as the business processes and can summon
an army of transaction codes like incantations. When asked for a
report with analytics, they really have two options: code the report in
SAP or push the data to a data warehouse where someone else will
generate the report. Both of these processes are typically long,
resource-intensive endeavors that lead to frustration for the end user
and the SAP professional. For one particular client, the biggest
complaint from the SAP users was that by the time they actually got a
requested report, it was no longer relevant.

Reading this book will help you—the SAP professional—build a
bridge between the worlds of the business professional and the data
scientist. Within these pages you will find ideas for getting out of the
typical reporting and/or analytics methodology that has hitherto been
so restrictive. As we discussed earlier, one of the first ways to do that
is to simply ask better questions.

Here’s a typical SAP scenario: Cindy works in Accounts Receivable.
She needs a 30-60-90 day overdue report listing past due customers
and putting them into buckets according to whether they are 30 days,
60 days, or 90 days past due. Sharon in Finance gets the request and
knows that she can have a standard ALV (ABAP List Viewer) report
created or can extract the data and push it to a business warehouse
(BW) where they will generate a report using Microstrategy or
whatever tools they have.

What if we shifted Sharon’s perspective to that of a data scientist?
Sharon gets the report request. She knows she can deliver just what



was requested, but then she thinks, “What more can be done?” She
opens up a notepad and jots down some ideas.

Are there repeat offenders in late payments?

Are there any interesting correlations in the data? We know the
customer name, customer payment history, customer purchases, and
dollar amount.

Can we predict when a person will be paying late? How late?

Can we use this data to help rate our customers? Lower rated
customers may not get an order when inventory is low and a higher
rated customer also makes the same request.

What types of visualizations would be helpful?

Sharon sketches out an interactive dashboard report that she thinks
would be very useful for her users. Armed with these ideas and
sketches, Sharon asks the department data scientist (or SAP
developer) about the possibilities.

There is a distinctive difference in approaches here. The first is a
typical SAP response, and limits the creative and intellectual capacity
of the business analysts. The second leverages their creativity. Sharon
won’t just provide the requested information. When she sees the data
in SAP and asks better questions, she’ll be instrumental in substantial
process improvements.



This is just one example. Think of the possibilities with all the
requests a typical SAP team gets, and hence this book!

Another way to shift the thinking of the SAP team to be more
dynamic and data centric is to use better tools. This is the
responsibility of the SAP developer. Most SAP developers live in the
world of its application programming language called ABAP
(Advanced Business Application Programming), and when asked to
provide reports or process improvements turn instantly to the SAP
GUI or Eclipse. This is where they’re expected to spend time and
deliver value.

TIP
ABAP was originally Allgemeiner Berichts-Aufbereitungs-Prozessor. It’s
a server-side language specially designed to extend the core
functionality of SAP. You can create programs that display reports, run
business transactions or ingest outside system data and integrate it into
SAP. A great deal of SAP ERP transactions run solely on ABAP code.

ABAP developers often specialize in one or more of the business
functions that SAP provides. Since ABAP programs often directly
enhance standard SAP features, ABAP developers become very
familiar with how enterprises design their processes. It’s very
common for people familiar with ABAP to perform both technical
programming roles and business analyst roles.



TIP
SAP developers, we implore you: view SAP as a data source. The presentation
layer and logic layer of reports should be abstracted away from the database
layer (see Figure 1-1). It is worth noting that SAP data is highly structured with
strict business rules. One of the most obvious advantages to this approach is the
logic layer has access to other sources of data, such as public data. Within an
SAP system, if a request was made to view the correlations between sales of
galoshes and weather patterns, the weather data from the NOAA would have to
be brought into either BI or SAP itself. However, by using a tiered model the
data can be accessed by the logic tier and presented in the presentation layer.
Often the data may be an API, which allows for access without storage. This
model also allows the logic tier to tie into tools like Azure Machine Learning
Studio to perform machine or deep learning on the SAP data.





Figure 1-1. A simple, layered approach to
databases, logic, and presentation of data science

findings

SAP lacks the thousands of libraries in Python or the thousands of
packages in R.  It also lacks the ability to easily create
dynamic/interactive dashboards and visualizations. Don’t get us
wrong: SAP does have tools to do advanced analytics, dashboards,
and visualizations. It’s just that they cost a lot of money, effort, and
time. Some places have lead times measured in months or quarters
before reports can be created, and sometimes the window for a valid
business question is measured in hours. With the tools in this book,
we intend to close that gap. If you’re an SAP developer, we would
strongly advise you to learn programming languages like Python and
R so that you can use them to do your analytics on SAP data. Firstly,
they are not limited to the SAP ecosystem and secondly, they are free.

Outside of SAP, there are numerous other tools to help SAP
developers present their SAP data. You can use RMarkdown in R,
Shiny in R, Jupyter Notebooks in Python, PowerBI, Tableau,
Plotly...the list goes on. In this book we will provide presentation
examples using PowerBI, RMarkdown, and Jupyter Notebooks.

A Quick Look: SAP Basics for Data
Scientists
The lack of awareness around SAP is often surprising considering its
size and ubiquity. Here’s an amazing fact: 77% of the world’s
transaction revenue is involved—in one way or another—with an
SAP system. If you spend money, you have more than likely

1



interacted with SAP. And 92% of the Forbes Global 2000 largest
companies are SAP customers.

But how in the world does SAP software touch all that? What does it
do? While in recent years SAP has acquired a number of SaaS
(Software as a Service) companies to broaden its portfolio and make
shareholders richer, it began with its core focus on ERP: enterprise
resource planning.

SAP started in Germany in 1972 under the sexy moniker
Systemanalyse und Programmentwicklung. Running under DOS on
IBM servers, the first functionality was a back-office financial
accounting package. Modules soon followed for purchasing,
inventory management, and invoice verification. You can see the
theme emerging: doing the common stuff that businesses need to do.

That list of functionality may seem rather dull at first, especially to us
cool hipster data scientists with Python modules and TensorWhatsits
who know how to make a computer tell us that a picture has a dog
(but not an airplane) in it. It’s not magic like searching Google or
using Siri on your iPhone. But SAP added a twist to those first few
boring modules: integration. Inventory management directly affected
purchasing, which directly affected financials, which directly
affected...well, everything. That single SAP ERP system contained all
of these modules. Now, instead of having to purchase and run
separate financial/inventory/invoicing systems, companies saved
loads of money. When one system gave them all the answers to
business questions, customers started buying in droves. That was the
value and the win of ERP. By the time Gartner coined the term ERP



in the 1990s, SAP was doing over a billion Deutsche marks in yearly
sales.

ACRONYMS FOR SAP INSIDERS
Since the 1970s, SAP has expanded into other areas of the back-office business. A modern SAP ERP
implementation contains the option to run complex modules for many business functions. They have
acronyms that SAP insiders know very well:

SD: Sales and Distribution

Manage sales, shipping, and billing activities.

QM: Quality Management

Manage quality inspections and notifications raised from there.

PM: Plant Maintenance

Planning maintenance of plant equipment, and tasks to perform during that maintenance.

FICO: Financial Accounting, Controlling

Vital organizational financial data, managing profit/cost centers and internal orders.

HCM: Human Capital Management

Everything you think of when you think “HR.”

PP: Production Planning

Capacity planning, material planning, and activities related to actually making the things you
make.

MM: Materials Management

Inventory, procurement, and master data for materials.

PS: Project System

Project and portfolio management, for both internally and externally financed projects.

When you consider all the other capabilities that SAP’s satellite products bring, this list doesn’t even
scratch the surface. There’s Customer Relationship Management, Transportation Management,
Supplier Relationship Management, and acquired cloud offerings like Ariba (B2B network and
marketplace) and Concur (travel and expense management).

No single book could possibly capture all of this functionality. In this book, we focus on data scenarios
in a couple of the ERP modules and in SAP CRM.



NOTE
Since such a high percentage of large companies around the world use SAP for
so many business-critical functions, is it any wonder that so much business can
be conducted inside it?

Getting Data Out of SAP

Like most large business applications, SAP ERP uses a relational
database to house transactional and master data. It’s designed such
that customers can choose from many relational database
management systems (RDBMS) to function as the SAP application
database. Microsoft SQL Server, IBM DB2, Oracle, and SAP’s
MaxDB are all supported. In the last few years, SAP has rapidly
introduced another proprietary database technology, HANA, as an
RDBMS solution with in-memory technology. While future versions
of SAP’s core ERP product will one day require HANA, most SAP
installations today still use one of the other technologies as their
database.

TIP
In this book, we will introduce several ways of getting data out of your SAP
system, none of which will require you to know exactly which DB your SAP
system runs on. But if you’re a true nerd, you’ll find out anyway.

The relational databases that power the SAP instances at your
company are huge and full of transactional and master data. They
fully describe the shape of the vital business information stored and



processed by SAP. The databases at the heart of your SAP systems
are the source of truth for the discoveries you can make.

And unless it’s your absolute last resort, you should never directly
connect to them.

All right, we’re being a little facetious here. You will find valid times
to directly query data from the SAP databases with SQL statements.
But the sheer size and incredible complexity of the data model make
it so that fully understanding the structure of a simple sales order can
involve over 40 tables and 1000+ fields. Even SAP black belts have
difficulty remembering all the various tables and fields they need to
use, so imagine how inefficient it would be for a data scientist who is
new to SAP to unpack all the various bits of requisite data.

BAPIS: USING THE NETWEAVER RFC LIBRARY

Data nerds who don’t know SAP that well should start by examining
the available Business Application Programming Interfaces (BAPIs)
in the SAP system. BAPIs are remote-callable functions provided by
SAP that expose the data in various business information documents.
Instead of figuring out which of the 40+ sales order tables apply to
your particular data question, you can look at the structure of various
sales order BAPIs and determine if they fill that gap. The trouble of
reverse engineering the data model is gone.

BAPIs also help by covering over system limitations from earlier
versions. During the early period of SAP’s core product development,
the various modules restricted the number of characters that could
denote a table or field. With SAP’s remarkable stability over the



years, those table and field names have stuck around. Without living
inside SAP, how could you possibly know that “LIKP” and
“VBELN” have anything to do with delivery data? BAPIs are a later
addition, so they have grown up with interfaces that better describe
their shape and function.

ODATA

SAP NetWeaver Gateway represents one of SAP’s many ways of
breaking into the modern web era. It’s an SAP module—in some
cases running enough of its own stuff to be worth a separate system—
that allows SAP developers to quickly and easily establish HTTP
connections to SAP backend business data. We predict that you’ll see
examples of using SAP NetWeaver Gateway in Chapter 6.

The foundational layer of transport is known as OData. OData
represents many tech companies coming together to put forward a
standard way of communicating over the web via RESTful APIs. It
provides a common format for data going over the web using either
XML or JSON, ways for clients to indicate the basic
create/read/update/delete operations for server data, and an XML-
based method for servers to specify to clients exactly the fields,
structure, and options for interacting with data that the servers
provide via metadata.

Using OData through SAP NetWeaver Gateway requires
programming in SAP’s native backend language, ABAP. Some of our
SAP-native readers may be well versed in this language and can
produce Gateway OData APIs. Other readers will likely be
unfamiliar, but should take solace: if your company runs SAP in any



meaningful way, your company will have people who know ABAP.
These people will either know how to create OData services, or will
be able to quickly learn since it’s not difficult.

Choose OData when you can’t find a BAPI that meets your data
needs. It’s a great middle ground that provides SAP administrators
with the flexibility to meter and monitor its usage. It also gives
developers the ability to put together data in any way they choose.
Another benefit of using OData is that it doesn’t require a NetWeaver
connector like the BAPI method: any device that can make HTTP
requests safely inside the corporate network will be able to make
OData requests.

OTHER WAYS TO GET DATA

If you can’t find the right BAPI and you can’t find the resources to
make an OData service, there are always a few other routes you can
take. We’ll cover those more briefly, since they aren’t things we
typically recommend.

Web services

SAP allows you to create web services based on its Internet
Communication Manager (ICM) layer. These web services allow you
to work even more flexibly than OData, but they still require ABAP
knowledge. The space between OData with Gateway and a totally
custom SAP web service is small—consider carefully whether your
data question can’t be answered with OData.

Direct database access
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Everyone says you shouldn’t, but we’ve all also encountered one or
two times when it was the only thing that would work. If you need to
go this route, a key task will be ensuring that the data you extract
matches up with what SAP provides on the screen to end users. Many
times there are hidden input/output conversions and layers of data
modeling that don’t become apparent when just browsing through a
data model.

Seriously. Picking directly from an SAP database is like driving a
Formula One car with brake problems. You’ll get where you need to
go really fast, but you’ll probably smash into a wall or two on the
way.

Screen dumps to Excel

Sometimes an end user will know exactly which screen has the right
data for them. Many times this screen will have a mechanism for
exporting data to Excel.



WHICH WAY?
A simple set of rules for deciding how to get your SAP data from the system:

BAPI

I know what data I want, and SAP provides the exact right remote function to get it.

OData

I know what data I want, but SAP doesn’t provide the exact right function for it—or I want to be
able to extract this data with a simple web call.

Web services

I know what data I want, but OData doesn’t quite let me shape the data exactly as I want.

Direct DB access

I know what data I want, and I know exactly what the SAP application data model provides for
this, but I don’t have ABAP skills to build it myself.

Screen dumps to Excel

Somebody else knows what data I want, and can only provide it by going to a screen to get it for
me.

Roles and Responsibilities
Data science combines a range of skill sets. These often include
statistics, programming, machine learning, analysis, architecture, and
engineering. Many blogs and posts online discuss the differences
between data science roles. There are innumerable job titles and
delineations. One camp defines roles into data analysts, data
engineers, data architects, data scientists, and data generalists. Other
groups have their own delineations.

Readers should understand something very important. Unless you are
at a very large company with a data science team, you will be lucky
to have one person on your team with some of these skills. These job
delineations exist in theory for all, but in practice for only a small



percentage. Be prepared to wear many hats. If you apply some of
these forays into data science at your company, be prepared to do the
work yourself. Don’t have a SQL database and want to extract and
store some SAP data? We’ll introduce this. Want to automate a
workflow for extraction? Here you go. Everything from the SAP data
to the presentation layer will be covered.

Our intention is clear: we want to create citizen data scientists who
understand what it takes to make data science work at their
organizations. You may not have any resources to help you, and you
may get resistance when you ask for some of these things. Often, you
must prove your theory before someone helps. We understand that the
roles and responsibilities are not well defined. We hope to give you
an overview of the landscape. If you’re reading this book, you’ve
already rolled up your sleeves and are ready to do everything from
building SQL databases to presenting machine learning results in
PowerBI.

Summary
A huge part of getting value is communicating it. We went over how
to tell great stories with the data you find in SAP: identify your story,
find the audience, discover the data, and apply rigorous tooling to that
discovered data. Sometimes all it takes to communicate the story is
one simple graph. Other times it may require detailed lists of results.
But no matter what visual method conveys your findings, be prepared
to tell a story with it.



SAP professionals looking to tell stories about their data should look
at tools such as programming languages like Python and R, and
visualization tools like Tableau and Power BI. Look at Chapter 2 to
dive deeper.

Data scientists looking to discover what’s in SAP should look at ways
of getting that data out. BAPIs provide a function-based approach to
retrieving data, OData sets up repeatable and predictable HTTP
services, and you can always dump screen data to Excel or directly
query the SAP database as a last resort. Look at Chapter 3 to find out
more.

We want you to get the most out of the SAP data that’s ripe for the
picking in your enterprise, and the best way to get value out of raw
data is by applying data science principles. This book will show you
how to marry the world of SAP with the world of data science.

1  For a taste of how expansive the R package landscape is, see this blog post for
perspective on package list growth and search strategies for finding the right ones.

2  However, this book couldn’t be called “Practical” if we didn’t acknowledge that the
worst hacks and ill-advised duct-tape solutions make up at least 50% of any real-world
environment.

http://bit.ly/2kIobHy


Chapter 2. Data Science for
SAP Professionals

NOTE
If you’re a data scientist, you may not need much of the information in this
chapter. We’re trying to get SAP professionals up to speed on things that you
probably already know.

As a SAP business analyst, Fred is always looking for process
improvements. That’s his job, and he is good at it. He’s heard a lot of
buzz about data science, but to him, it is just that...buzz. Data science
is creating the self-driving car, beating world champions at Go, and
translating languages. Fred works at a US manufacturer, and data
science has no real relevance to him.

Or does it?

If Fred knew the basic concepts around data science, he would
understand how it could be leveraged to provide business value. He
recently worked with the product development team, which is
looking to IT for help in streamlining their processes. They have lots
of unorganized data. They present Fred with an idea, a dashboard to
help them track their process. When Fred evaluates the project his
first response is to put the data in a SQL database. Once there he can



use a presentation tool like PowerBI to create a dashboard. It is a
solution that everyone likes.

Fred doesn’t know the basics of data science. There are features in
this data that might help the company make better, data-driven
decisions. If he knew the basic concepts of regression and clustering,
he would see it. He would know that he could do more with this
business data than the project team requested.

Therein lies the point of this chapter. We’re not trying to create data
scientists. We are trying to get business analysts to think a little like a
data scientist; we’re trying to create citizen data scientists. These are
business analysts and professionals who understand enough about
data science to ask questions about how it can be applied to their data
(in particular, useful to their SAP data). To do that, we need to
introduce the fundamentals of data science, including the different
types of learning models: machine learning and neural networks.

What follows is a rabbit race through the subject that will leave you
with, at the very least, enough information to think about business
processes in a slightly different way...in a data science way. Ideally
you can think about your projects and data and say to your data
scientist or developer, “Maybe a classification algorithm like Naive
Bayes might work on this.” Imagine the jaws that will drop to that
response!

This is a conceptual chapter that provides an overview of the main
data science concepts, and as such we will not discuss tactical ideas
such as exploratory data analysis (EDA) or data preparation. We’ve



covered the topics we feel are most relevant, but one could easily
argue that we left out things of importance, such as automated
machine learning (autoML) and ensemble methods; however, we had
to draw a line in the sand somewhere to keep this chapter
manageable. Nonetheless, we will later take a look at tactical
concepts such as EDA (discussed in Chapter 4), so stay tuned.

Machine Learning
The syntax in data science can be confusing and overlapping. Deep
learning is a component of machine learning by definition, but we
refer to deep learning as those models that use more complex neural
networks. Deep learning requires more computing power, more time,
and more data to be successful. Often, simpler machine learning
models perform equally, and sometimes better. Don’t overlook them
in the face of shiny and fancy neural networks.

NOTE
Most data scientists spend the majority of their time finding, cleaning, and
organizing huge amounts of data. Some estimates say that data scientists spend
80% of their time on this unrewarding task. We have good news for the data
scientist looking at SAP data. SAP is an ERP system. The millions of rows of
business data are already in a relational database. While this does not end the
need to do some cleaning and reorganizing, it does reduce that effort. We will
show how to find and extract this data, but often there is very little cleaning or
organizing needed.

Machine learning falls roughly into four categories:

http://bit.ly/2NBXPTJ


Supervised

Unsupervised

Semi-supervised

Reinforcement

TIP
Deep learning includes these categories as well. It is considered a subset of
machine learning. For the purposes of this book, here we refer to machine
learning and not the subset of deep learning. We will present deep learning a
little later. There is a lot of overlap and confusion in the terminology. If you
follow news about machine learning, you’ll see that no two people on Earth are
using the same terminology in the same way—so don’t feel bad about getting
confused.

Supervised Machine Learning

Supervised machine learning is done on labeled data. It works well
on classification, which is a method to classify or predict categorical
labels for a set of data. In marketing, for instance, it may be
determining the customer who will buy a product. Supervised
machine learning also works well on prediction. Prediction is a
method to determine a numerical value from a set of data. Using the
same analogy as for classification, in marketing it may be used to try
and determine how much a customer will spend. For example, the
well-known Iris dataset includes information about the petal length,
petal width, sepal length, and sepal width of 150 iris flowers, and
identifies their species. Once we train a model against this data, it can
accurately predict the species of a new iris flower, given its sepal and



petal data. Let’s take a closer look at some of the different types of
supervised machine learning models.

LINEAR REGRESSION

Linear regression is an approach to modeling the relationship
between a dependent variable and one or more explanatory variables.
The relationship between a home’s value and its square footage is a
good example (Figure 2-1). If you have several home values and their
respective square footage you could surmise the value of an unknown
home if you know its size. Granted, there’s more to a home’s value
than that, but you get the point.



Figure 2-1. Linear regression of housing prices by square footage

LOGISTIC REGRESSION



Logistic regression, like linear regression, uses the same basic
formula. However, logistic regression is categorical while linear is
continuous. Using the same home value example, linear regression
would be used to determine the home value, whereas logistic
regression could be used to determine if it would sell.

DECISION TREES

Decision trees are a type of model that simply asks questions and
makes decisions. The nodes of the decision tree ask questions that
lead to either other nodes, or to end nodes (leaves) which are
classifications or predictions (Figure 2-2).





Figure 2-2. Decision tree for eating a cookie

RANDOM FOREST

Random forests are groups of decision trees that help solve one of the
biggest problem of decision trees: overfitting (Figure 2-3).
Overfitting a model means that it is very good at solving problems it
knows, but when introduced to new data it will fall short. Think of it
as training yourself to be a world-class Formula One driver—but
never learning to park.

Figure 2-3. Random forest

Unsupervised Machine Learning
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Unsupervised machine learning, as you may have guessed, does not
have labeled data. That is, you have a pile of data, but you do not
know the output label. For example, you have a set of voting records
with age, sex, income, occupation, and other features. What you do
not know is how they relate. Let’s take a look at some of the different
types of unsupervised machine learning.

K-MEANS CLUSTERING

k-means clustering takes data and groups it into a given set of points
(Figure 2-4). An example would be to segment or cluster a group of
customers into groups representing their buying frequency. One way
it does this by grouping them with the nearest mean value. It also
works on words if you use a non-Euclidean  distance, such as
Levenshtein. We will go more into this in Chapter 7.
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Figure 2-4. Clustering

NAIVE BAYES

Naive Bayes is not a single algorithm but a collection of classification
algorithms within the Bayes’ theorem family (Figure 2-5). The
common concept is that every feature of the data is classified as
independent of every other feature. For example, a car has a hood, a
trunk, wheels, and seats. Naive Bayes sees all of these as independent
contributors to the probability the object is a car. Naive Bayes is
extremely fast and is often the first classifier tried for machine
learning tasks.

Figure 2-5. Bayes’ theorem

Here are the terms of Bayes’ theorem, in plain language:

P(c | x)

The probability the hypothesis (c) is true given the data (x).

P(x | c)

The probability of the data (x) if the hypothesis (c) is true.

P(c)



The probability the hypothesis (c) is true regardless of the data.

P(x)

The probability of the data (x) regardless of the data.

This is a common explanation of Bayes; it’s found everywhere.
However, it’s a bit tricky to understand so let’s simplify.

There is a very common and intuitive explanation of Bayes using
breast cancer as an example. Consider this scenario: a patient goes to
the doctor for a checkup and the results of a mammogram come back
abnormal. What are the odds the patient has cancer? You might
intuitively think that cancer must be present because of the test
results, but applying Bayes to the situation shows something
different. Let’s take a look.

Consider these statistics:

1% of women age 40 who participate in routine screenings
have breast cancer. 99% do not.

80% of mammograms will detect cancer when present and
20% miss it.

9.5% of mammograms return a false positive; they detect
cancer when it is not there. Meaning 89.5% do not detect
cancer and it is not there (true negative).

The probability of the event is the event divided by all
possibilities.
P(c|x) = .01 * .8 / (.99 * .095) + (.01 * .8) = .0776

Intuitively you hear that the mammogram is 80% accurate, so a
positive result would mean you have an 80% chance of having
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cancer. But the truth is...you only have a 7.8% chance even if you get
a positive result.

HIERARCHICAL CLUSTERING

Hierarchical clustering is a method of grouping results into a
dendrogram, or tree (Figure 2-6). If it starts from many clusters and
moves to one it is called divisive. If it starts from one cluster and
moves to many clusters it is agglomerative. A divisive method
partitions a given cluster by computing the greatest difference (or
distance) between two of its features. An agglomerative method does
the opposite. It computes the differences between all clusters and
combines the two with the least common distances between their
features. They both continue until they are either out of data or the
dendrogram splits the predefined number of times. We will go into
more detail in Chapter 7.



Figure 2-6. Agglomerative and divisive hierarchical clustering



Semi-Supervised Machine Learning

Semi-supervised machine learning is a combination of supervised and
unsupervised learning. In this scenario you have a lot of data but not
all of it is labeled. Consider the scenario for fraud detection. Credit
card companies and banks have huge amounts of transaction data,
some of which has been properly labeled as fraudulent. However,
they do not know of all the fraudulent transactions. Ideally, they
would properly label all of the fraudulent transactions manually.
However, this process is not practical and would take far too much
time and effort. There exists a small set of labeled data and a very
large set of unlabeled data. In semi-supervised learning one common
technique is called pseudo-labeling. In this process the labeled data is
modeled using traditional supervised learning methods. Once the
model is built and tuned, the unlabeled data is fed into the model and
labeled. Finally, the labeled data and the newly pseudo-labeled data is
used to train the model again (Figure 2-7).



Figure 2-7. Pseudo-labeling for semi-supervised learning



Reinforcement Machine Learning

Reinforcement machine learning is when you train a model to make
decisions based on trial and error. This model interacts with its
environment by learning from past successes and failures. It then
determines a course of action for the next attempt or iteration. It
works on the premise of maximizing a reward. The most common
example of this is training a machine to play a game. Let’s take a
closer look at some of the different types of reinforcement learning.

HIDDEN MARKOV MODELS

Hidden Markov models (HMMs) are a series of observable
emissions. These are the results of a given state that a model passed
through to make those emissions. This is a bit confusing so let us
clarify. In a HMM you cannot directly observe the state, but you can
observe the results of those states. You work in an office without
windows and you cannot see the weather outside. You can see what
people are wearing when they show up to the office. Say 75% of
people are carrying umbrellas...you can surmise that it’s raining
outside. HMMs are popular ways to identify sequences and time
series. They do not look at the true state; rather, they look at the
emissions from the true states. The simplest models assume that each
observation is independent of the next. However, HMMs assume a
relationship between the observations. As another example, a series
of data is observed for weather. That data has features in it like
barometric pressure, temperature, and day of the year. The
corresponding emission data has the binary feature of “not cloudy” or
“cloudy.” Observing many days in succession, the model predicts the
state of the weather not only on today’s observable features, but on



the previous days’ features. HMMs attempt to identify the most likely
underlying unknown sequence to explain the observed sequence.

The concept is a bit tricky so let’s use another example. Say you’re
wanting to use a HMM to determine if there is going to be an
increase or decrease in the number of purchase orders placed at your
company for widgets. SAP has a history of purchase order data with
timestamps. It also has other states that might influence when widgets
are purchased. There are sales orders, time of year (seasonality),
warehouse inventory levels, and production orders. Each of these
could be used by the HMM. Think of it in this way: “past behavior
predicts future behavior.”

Q-LEARNING

Q-learning is a value-based reinforcement learning algorithm. It is
based on the quality of an action. Q-learning goes through steps
where it learns to optimize its outcome (Figure 2-8). In a way, it
builds a secret cheat sheet of how it should behave. In the example of
game play, it takes an action, evaluates that action, updates its cheat
sheet with whether it was good or not, and then tries again. It iterates
on this incredibly fast.



Figure 2-8. Q-learning steps

A common illustration is to imagine a game where you are a dog and
you must find the pile of bones. Every step you take costs one bone.



If you run into that pesky cat you lose 10 bones and die (Figure 2-9).
The goal is to maximize the number of bones.

Figure 2-9. Q-learning dog optimizes for most bones

It may seem like a simple game to us, but a computer doesn’t know
how to start. So first it goes down and gets two bones. Yaaaah! Man,
that was a good move. It records that and takes a step to the right.
Damn that cat...game over. It updates the cheat sheet with that
information. Next time it takes a right step first, then another right,
and then it only has the option of down. Yes—a motherlode of
bones!! Remember there is a –1 bone price per step. The result is –1



+2 –1 –1 +1 –1 –1 +10 = 8. It logs the results and tries again. This
time it takes a right because it knows there is a +1 there. It takes
another right and then a down to hit the motherlode. The result is –1
+1 –1 –1 +10 = 8. Both paths are equally as valuable, but if there is a
bonus or limit on the number of steps option 2 wins.

You may be thinking, “Pretty cool, but how would this apply to
anything but games?” Take the image of the bulldog finding the path
to the motherlode. Now imagine it is a simple warehouse...expand it
greatly (Figure 2-10). Reinforcement learning could reduce transit
time for picking, packing, and stocking as well as optimizing space
utilization. It is more complex, but fundamentally the same as the dog
and bones game.



Figure 2-10. This warehouse is more complex than a dog finding a bone, but pathfinding
through reinforcement learning works here, too



Neural Networks
Both of us authors have been programming for many years and have
experienced some wonderful “wow” moments along the way. Greg
learned to program using Basic on the Apple IIe. He had been
programming for about a year before learning the PEEK, POKE, and
CALL commands. The first time he used these evocations and ran his
program, he sat back and thought, “Wow!”; he’s been programming
in one form or another ever since. Greg and Paul both had that feeling
when they wrote their first few deep learning programs. “Wow!” is all
we could say.

Let’s talk about deep learning and what that term means.

Traditional programming follows a tale of straightforward, predefined
logic. IF this THEN perform that action 10 times. It’s so powerful
that we can simulate beautiful scenery and create games that transport
us to magic, imaginary realms. But it makes tasks such as language
translation near impossible. Imagine the program it would take to
translate English to Korean. That program would need to have
conditions for words, phrases, negations, syntax, vernacular,
punctuation, and on and on, ad infinitum. Imagine nesting all that in
linear logic. Along comes machine learning. Now you input a set of
English texts and their translated Korean equal. You train the model
by showing it the input and the expected output. The more data you
have, the more you can train your model. Finally, you input a set of
English texts that do not have a Korean translation and kazam! It
performs the translation as it has learned.



That is remarkable in itself, but it gets better. Google built a deep
learning algorithm in 2016 that translated from English to Korean,
Korean to English, Japanese to English, and English to Japanese.
Pretty incredible by itself—but that’s not the amazing part. The
network was able to translate from Japanese to Korean and Korean to
Japanese without first translating through English. Let that sink in.
What is happening in the network to allow for such a thing to
happen? The network learned a metalanguage—a type of linguistic
mapping that transcended simple one-to-one language translation.

When translating from Japanese to Korean one would expect the
model to go through the English first (the curved lines); see Figure 2-
11. After all, the model was not trained to go from Japanese to
Korean. However, the model did not do this. It went directly from
Japanese to Korean (the dotted line). Amazing! Kind of spooky
actually.

https://tcrn.ch/2Pcz2YJ
https://tcrn.ch/2Lc0KAM


Figure 2-11. Google’s language translator

Google’s language translator is a neural network in action. Let’s take
a look at a few basic neural network architectures. This is a gentle
introduction to neural networks and deep learning. We hope it piques
your curiosity enough for you to want to take a deeper dive. At its
foundation, a neural network is a series of interconnected processing
modules that work together to take inputs and solve for a given
output. They are inspired by the way neurons and synapses in the
brain process information. They have been instrumental in solving



problems ranging from image classification  to language translation.
We will go into more depth on this in Chapter 9.

There are three basic layers to a neural network:

The input layer

This is where the data is input into the network.

The hidden layer(s)

This layer performs basic computation and then transfers weights
to the next layer. The next layer can be another hidden layer or
the output layer.

The output layer

This is the end of the network and where the model outputs
results.

Neural networks have six foundational concepts, as described in the
following sections.

FEED-FORWARD PROPAGATION

Data (weights and biases) flows forward through the network from
the input layer through various hidden layers and finally to the output
layer (Figure 2-12).
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Figure 2-12. Feed-forward propagation

BACKWARD PROPAGATION

After data is fed forward through the network, the error (desired
value minus the obtained value) is fed backward through the network
to adjust the weights and biases with the aim of reducing the error
(Figure 2-13).

Figure 2-13. Backward propagation
/>



GRADIENT DESCENT

An optimization function that attempts to find the minimum value of
a function. Another way of saying it is that gradient descent has the
goal of minimizing the cost function as much as possible (Figure 2-
14). When this is achieved, the network is optimized. A common
analogy is a man walking down a mountain. Every step he takes he
wants to head in a downward direction until he reaches the lowest
possible point; it is here where the cost function is at a minimal.
When this is achieved the model has the highest accuracy.

Figure 2-14. Gradient descent

LEARNING RATE



The learning rate is the size of the steps we take to achieve the
minimum of gradient descent (bottom of the mountain). If the
learning rate is too large, it will pass the minimum and potentially
spin out of control. If it is too small, the process takes far too long
(Figure 2-15).

Figure 2-15. Learning rates

NEURON

A neuron is the foundation of a neural network. It takes an input, or
inputs, applies a function to those inputs and renders an output. It is
loosely based on the human neuron (Figure 2-16).



Figure 2-16. Neuron

FUNCTIONS

A function is a mathematical equation within a neuron that takes the
input values and decides whether it should activate (or fire). There
are many activation functions, but these are the are most common in
neural networks:

Sigmoid

Takes the input value and puts it in a range from 0 to 1 (Figure 2-
17).





Figure 2-17. Sigmoid

Tanh

Takes the input value and puts it in the range of –1 to 1 (Figure 2-
18).

Figure 2-18. Tanh

ReLU

Rectified Linear Unit takes the input value and puts it in the range
of 0 to infinity. It makes all negative values 0 (Figure 2-19).



Figure 2-19. Rectified Linear Unit

Leaky ReLU

Takes an input value and puts the range from a very small
negative value to infinity (Figure 2-20).

Figure 2-20. Leaky Rectified Linear Unit

Softmax

Takes the inputs and predicts a result over a certain set of
possibilities. For instance, in digit recognition the softmax



function returns a result of 10 possibilities (0-9) with probabilities
for each. If you have five different sodas, it would return five
possibilities with probabilities for each (Figure 2-21).

Figure 2-21. Softmax Function

NOTE
ReLUs have the problem of “dying”—getting stuck on the negative side and
always outputting a value of 0. Using Leaky ReLUs with their slight negative
slope can remedy the problem, as can lowering the learning rate.



As business analysts we recommend taking a high-level view of
machine learning and, in particular, neural networks. You can go
down many rabbit holes here trying to understand the exact difference
between sigmoid or tanh, or how exactly to determine gradient
descent. You can dig into the math of this to such an extent you could
write many doctoral theses on it. Our goal with this overview is to
impart to SAP business analysts the sheer depth of this beautiful
science. Furthermore, a basic understanding of this science will allow
you to leverage it for real-world results.

Now that we have some of the fundamentals, what are some of the
basic neural networks we see in practice today?

SINGLE LAYER PERCEPTRON

A Single layer perceptron is the simplest form of a neural network
(Figure 2-22). It has no hidden layers. It has only an input and output
layer. You might think that diagram has two layers, but the input layer
is not considered a layer because it does no computation. A single
layer perceptron receives multiple input signals, sums them, and if
the value is above a predetermined threshold it fires. Because they
either have a value or not, they are only capable of discerning
between two linearly separable classes. What’s the big deal? In
themselves, the single layer perceptron is quite limited. However,
they comprise other neural networks. Imagine: the average human
brain has 100 billion neurons. Each neuron has a simple function, as
simple as this single layer perceptron. It is the concert of these
neurons in our brains that makes the music of who we are.



Figure 2-22. Single layer perceptron

MULTILAYER PERCEPTRON

A Multilayer perceptron is composed of multiple layers (Figure 2-
23). They are normally interconnected. Nodes in the first hidden layer
connect to the nodes in the input layer. A bias node can be added in
the hidden layer that is not connected to the input layer. Bias nodes
increase flexibility of the network to fit the data and their value is
normally set to 1. In more advanced neural networks the process of
batch normalization performs this function.



Figure 2-23. Multilayer perceptron

CONVOLUTIONAL NETWORK

A convolutional neural network (CNN) is a multilayer network that
passes weights and biases back and forth through the layers. CNNs
assume that the inputs are images and therefore there are special
layers and encoding to these networks. Why not use a multilayer
perceptron for image classification? Well, image data is big...it would
not scale well. CNNs use three-dimensional tensors composed of
width, height, and depth as their input.



Figure 2-24. Convolutional neural network layers

There are three unique layers to a CNN:

Convolutional Layer

The primary purpose is to extract features from the input. Every
image is a matrix of pixel values, which are converted to features
using a filter which slides over the image and computes a dot
product.

Pooling Layer

This layer is also sometimes called downsampling or
subsampling. It reduces the dimensionality of the features
presented by the convolutional layer by using either Max,
Average, or Sum values.

Fully Connected Layer

Similar to a multilayer perceptron that uses a SoftMax activation
function to deliver to the output layer a probability distribution.

CNNs can become very complex. Check out Google’s Inception
model, shown in Figure 2-25.



Figure 2-25. Google’s Inception model



NOTE
The field of neural networks is undergoing rapid and exciting change. Brilliant
minds are working ardently to push this field forward incredibly fast. Along
come researchers Sara Sabour, Nicholas Frost, and Geoffrey Hinton with a
proposal called CapsNets (Capsule Networks). (Hinton is an icon in this field;
when his name is on a paper...you read it.) In a multilayer neural network you
add more and more layers depending on your needs. In a CapsNet you add a
neural network inside another layer.

As Hinton says, “The pooling operation used in convolutional neural networks
is a big mistake and the fact that it works so well is a disaster.”

What makes capsule networks so exciting is they, like our own image
processing, do not take into account the orientation of the image. When a child
looks at a dog, the orientation of the dog does not affect his/her perception of
the image.

CapsNets are too new at this time, but if they continue to gain traction we will
discuss them more fully in future editions of this book.

RECURSIVE NEURAL NETWORK

A recursive neural network is a multilayer network that leverages
time-series or sequential data. They perform very well and are often
the go-to model for natural language processing (NLP) tasks and
time-series data. We will see them in action in the chapter Language
and Text Processing. In our other neural networks, once data is
passed to the next layer the previous layer is forgotten. However,
when trying to make predictions along a sequence of data it is
important to remember what came before it. These networks are
recurrent in that they double back and look at the previous input or
inputs. In a sense, they have a memory.

http://bit.ly/2lQr9dl


The arrows circling back show the recurrence in the RNN (Figure 2-
26). As you can see, this recurrence is very short; it only circles back
on the same layer. In essence, it has only a short-term memory. This
problem is overcome by introducing to the network a long short-term
memory (LSTM).

LSTMs allow the network to learn over a long period of time. They
have three gates: input, output, and forget. The input gate determines
what data is let in. The output gate determines what data is let out.
Finally, the forget gate decides what data should be forgotten. Their
architecture can be difficult for the beginner so suffice it to say that
LSTMs allow the network to remember over a long period. If you are
interested in a deeper dive into them, read this blog.

http://bit.ly/2kjzC8A




Figure 2-26. Feed forward and recurrent networks

TEMPORAL NETWORKS

A temporal convolutional network (TCN) is a multilayer network that
has the advantages of a convolutional network while also considering
placement and position.

Convolutional networks are generally very good at image recognition
and language classification. They do not however, care about
placement. For instance, a CNN wants to know if the image contains
a tail, a brown button nose, and floppy ears. Then it classifies that
image as a dog. It does not care about the positioning of the image. In
language classification, a CNN wants to know the presence of certain
keywords that will indicate if it is looking at a legal document, a
comic book, or a Hemingway novel. The position, again, does not
really matter. What if you want to work on data in which position and
placement is important, such as time-series data? Time-series data is
simply a dataset on a timeline with date and/or timestamps. As we
mentioned earlier, the industry go-to model for such tasks is the
RNN. However, like many things in data science, that model has
recently been unseated...by the mighty TCN.

Compared to RNNs, TCNs have the advantage of being
computationally less expensive and using a simpler architecture.
RNNs need resources, the LSTM layers, to remember. TCNs use
input steps that map to outputs that are used in the next layer of the
input (Figure 2-27). Instead of using recurrence, they use the results
of one layer to feed the next layer.



Figure 2-27. Temporal convolutional network

In Chapter 6, we do a simple sales forecast. TCNs seem like the
proper model to use for such a task; we will attempt to use it to
forecast the sales for a particular product from an SAP system.

AUTOENCODER

The Autoencoder is a feed-forward-only neural network with a
deceptively simple definition. It is a network that takes input data and
tries to copy it as the output. It is comprised of two parts:

Encoder

Deconstructs the input data.

Decoder

Reconstructs the data for output.

The most common use for this type of network is image denoising
and image generation. The real value in the autoencoder is not the
output, which is the case for our other neural networks. The real
value is in the representation that the neural network has of the output



in the compressed data. To clarify this further, the model at its most
compressed has learned the salient features of the object. Let’s say it
is looking at the image of a dog. The salient features are ears, eyes,
mouth, snout, dog-like nose, and so on. If the model compresses too
far it may think the only salient features are eyes and won’t be able to
tell the difference between a dog and any other animal. If the model is
not compressed enough such that it recognizes too many features
(such as coloring and facial shape) it will know only one type of dog.
The trick in this model is knowing the balance. As a recap, the neural
network is optimized not when the output is closer to the input, but
when the output still represents the key features of the input and the
data is compressed as much as possible.

NOTE
A key concept with Autoencoders is that the output dimension must be smaller
than the input dimension for the network to learn the most relevant features.



Figure 2-28. Autoencoder

Autoencoders are typically used for reducing the dimensionality of
the data and feature learning. They are commonly part of another
neural network where it helps reduce feature dimensionality.

GENERATIVE ADVERSARIAL NETWORK



A generative adversarial network (GAN) is a neural network
architecture where two networks, to put it frankly, fight. Hence the
term adversarial. The two networks are referred to as the Generator
and the Discriminator. Imagine this commonly used scenario. The
GAN wants to make fake money. The generator creates a bill and
sends it to the discriminator for testing. Well, the discriminator knows
what bills look like because it has learned from a set of real-world
images. The generator’s first attempt is woeful, it fails and it gets
feedback on its failure. Then it tries again, and again, and again until
it is able to produce a bill that the discriminator thinks is real. Then it
is the discriminator’s turn to learn. It finds out that it was wrong and
learns not to accept that fake bill again. This bickering goes back and
forth until a point where the networks fairly evenly fail and
succeed...a point where no more learning is happening on either side.





Figure 2-29. Generative adversarial network
/>

You may wonder how a network like this would be used. Well, these
networks like to mimic data. Therefore they have been taught to
mimic art, music, images, and even poetry. They can be taught to
merge concepts in images. For instance, you train the network on
images of men wearing hats, women wearing no hats and ask the
GAN to generate images of women wearing hats, and it does a pretty
good job. Sounds nifty, but what is the use in our business scenarios?
Well, GANs have been used to detect anomalies in data and also to
generate training data for other networks when a limited amount is
available. In the introduction to neural networks we provide here, we
would be remiss to not mention GANs. However, we admit it is
harder to apply them to business applications. Presenting them here is
illustrative of our goal of creating a type of Citizen Data Scientist
within the SAP business analyst community. Keep in mind all the
concepts, including GANs, and perhaps you will identify a business
scenario where a GAN could be employed.

Summary
If this was your first introduction to data science concepts, we
understand it was a lot to take in. If you are an experienced data
scientist you may have asked questions such as “Where is
XGBoost?” or “Why not AutoML?” Remember our main intent, we
want to get business analysts to think a little like data scientists. The
creation of citizen data scientists if you will. There are many other
areas of data science that we did not cover in this chapter but will



address later such as exploratory data analysis and data visualization.
Business analysts, we hope that you found in this chapter ideas that
will get you thinking about your own data—and in particular for this
book, your SAP data. In the following chapters we will go into
detailed business scenarios using SAP data and the concepts we
introduced in this chapter.

1  The authors recommend learning to park before Formula One racing, but we did not
analyze this using any of the techniques in this book. So who knows? Maybe it is
better to be an Formula One driver but not learn to park! More data is needed.

2  Euclidean distance is simply the ordinary straight-line distance between two points,
either on a plane or in three-dimensional space. Why say “straight-line” when you can
say “Euclidean distance” and sound scholarly? Bonus points if you have a pipe or
tweed jacket.

3  A much more detailed explanation of this scenario can be found at
http://yudkowsky.net/rational/bayes#content.

4  Image classification refers to the process of extracting information from an image and
classifying it; for example, to identify when a picture is of a Chihuahua or a blueberry
muffin.

http://yudkowsky.net/rational/bayes#content
http://bit.ly/2U6fpAt


Chapter 3. SAP for Data
Scientists

NOTE
If you’re an SAP professional, you may not need much of the information in
this chapter. We’re trying to get data scientists up to speed on things that you
probably already know.

At Big Bonanza Warehouse, Greg and Paul  make up the entire data
science team. They’re surrounded by delicious data everywhere they
look: plant automation systems, transportation records for customer
shipments, marketing campaign data, and the copious spreadsheets
and Microsoft Access databases that seem to sprout up everywhere at
big enterprises. They can’t get up to get coffee without hearing about
another fascinating data opportunity. They’re simultaneously
overjoyed and swamped: they get to come in and work on interesting
problems every day, but there’s no way they can ever catch up to the
insane backlog of data requests.

Well, of course, there’s one way they could catch up. They could dive
in and learn SAP.

Because SAP is the leviathan that continues to swallow other Big
Bonanza Warehouse systems whole. As Big Bonanza moves to
consolidate its enterprise software resources into the SAP portfolio,
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more of that delicious data disappears into the belly of the beast. Greg
and Paul know the amount of data—and therefore opportunity—in
SAP boggles the mind. They just have no idea how to go poking
around to get it. Talking to SAP end users doesn’t reveal the true data
model, and talking to SAP administrators hardly goes anywhere,
because they’re so incredibly overworked. ...



Chapter 4. Exploratory Data
Analysis with R

Pat is a manager in the purchasing department at Big Bonanza Warehouse. His
department specializes in the manufacture of tubing for a variety of construction
industries, which requires procuring a lot of raw and semi-raw materials.
However, Pat has a problem; he receives up to a hundred purchase requisitions
per day in SAP, which need approval before becoming purchase orders. It is a
burdensome and time-consuming process he would like help streamlining. He
decides to ask his IT department and the SAP team if anything can be done to
help.

The SAP team has already configured the system to be optimal for the purchase
requisition process. When Pat and the SAP team reach out to their colleagues on
the data science team, they immediately wonder: “Could we build a model to
learn if a purchase requisition is going to be approved?” There is ample data in
the SAP system—nearly 10 years of historical data—for which they know all
the requisition approvals and rejections. It turns out to be millions of records of
labeled data. All those records indicate approval or rejection. Doesn’t this fall
into supervised learning? It certainly does!

We introduced four different types of learning models in Chapter 2. Those are:

Supervised

Unsupervised

Semi-supervised

Reinforcement

We are inclined to think that the scenario mentioned here is a supervised one
because we have data that is labeled. That is, we have purchase requisitions that



have been approved and rejected. We can train a model on this labeled data,
therefore it is a supervised scenario. Having identified the type of learning
model we are working, the next step is to explore the data.

One of the most vital processes in the data scientist’s workflow is exploratory
data analysis (EDA). The data scientist uses this process to explore the data and
determine whether it can be modeled, and if so, how. EDA’s goal is to
understand the data by summarizing the main characteristics, most often using
visualizations. This is the step in the data science process that asks the data
scientist to become familiar with the data.

Readers who know SAP well: if you think you’re familiar with your data, go
through this exercise. You’ll be surprised how much you learn. There’s a vast
difference between knowing the general shape of the relational data and
knowing the cleaned, analyzed, and fully modeled results of EDA.

In this chapter we will walk through the EDA process. To make it more
understandable, we will go through it in real time. That is, we will not
manipulate data to make this lesson easy to write; rather, we’re going to make
this as realistic and relatable as possible. We will run into problems along the
way, and we will work through them as a real scenario. As shown in Figure 4-1,
EDA runs through four main phases: collection, cleansing, analysis, and
modeling. Let’s break down each phase briefly before we dive deeper into our
scenario.



Figure 4-1. Workflow for exploratory data analysis

The Four Phases of EDA
In the Collect Data phase, we start with our source system’s data. It’s important
to understand how the source system records data. If, for example, we don’t
know what purchase requisitions look like in SAP tables, we can’t pull them out
for later analysis.

Once we’ve understood the source data, we choose the methods and tools to get
it out and examine it. In this chapter, we use a flat-file extraction from SAP as
an intermediate storage, and the R data analysis language as the method to
process and play with the data. In EDA that focuses on business scenarios it’s
important to iterate on hypotheses quickly. Therefore, choose tools that you are
comfortable and familiar with.

If you’re not familiar with any tools yet, fear not! Many options exist for
extracting and analyzing. Chapter 3 discusses several alternative SAP data
extraction methods and later chapters of this book use many of them. The R
language is a favorite among statisticians and data scientists, but Python also
has a very strong community. In this book we’ll use examples and tools from
both languages.



After successfully extracting the data, we enter the Clean Data phase. The
source system’s database, data maintenance rules, and the method we choose to
extract can all leave their own unique marks on the data. For example, as we’ll
see sometimes a CSV extract can have extra unwanted header rows. Sometimes
an API extraction can format numbers in a way incompatible with the analysis
tool. It can—and often does—happen that when we extract years’ worth of data
the source system’s own internal rules for governing data has changed.

When we clean the data right after extracting, we’re looking for the things that
are obviously wrong or inconsistent. In this chapter we use R methods to clean
the data whereas you may feel more comfortable in another language. Whatever
your approach, our goal for this phase is having the data stripped of obviously
bad things.

Having met the goal of removing those bad things, it’s time to proceed to the
Analysis phase. This is where we begin to set up hypotheses and explore
questions. Since the data is in a state we can trust after cleansing, we can
visualize relationships and decide which ones are the strongest and most
deserving of further modeling.

In this phase, we will often find ourselves reshaping and reformatting the data.
It’s a form of cleansing the data that is not focused on removing bad (or badly
formatted) data; rather, it’s focused on taking good data and shaping it so that it
can effectively be used in the next phase. The Analysis phase often presents
several opportunities for this further reshaping.

The final phase is Modeling. By this phase, we’ve discovered several
relationships within the data that are worth pursuing. Our goal here: create a
model that allows us to draw insightful conclusions or make evidence-supported
predictions. The model ought to be reliable and repeatable. By modeling this
purchasing scenario, the SAP team seeks to arm Pat the purchasing manager
with information and tools that have an insightful impact on his business
processes.



Greg and Paul know this process well, so let’s get started!

Phase 1: Collecting Our Data
An easy way to get data out of SAP is by using the ABAP QuickViewer. This
transaction allows the user to view fields of a table or a collection of tables
joined together. For the purchase requisition to purchase order scenario we need
two tables: EBAN for purchase requisitions and EKPO for purchase order lines.
Use transaction code SQVI to start the QuickViewer transaction.

Enter a name for the QuickView (Figure 4-2).

Figure 4-2. QuickView first screen

Click on the Create button and give the QuickView a title (Figure 4-3).



Figure 4-3. QuickView title

Change the “Data source” to “Table join” (Figure 4-4).

Figure 4-4. QuickView type options

Click on the Enter button, then click on the Insert Table button (indicated in
Figure 4-5).

Figure 4-5. QuickView Insert Table button



Enter the name of the first table and click Enter (Figure 4-6).

Figure 4-6. First QuickView Table

Repeat the process, click on the Insert Table button, and then click Enter
(Figure 4-7).

Figure 4-7. Second Quick View Table

The tables will be displayed on the screen with their default relationships
determined (Figure 4-8). Always check these relationships to make sure they are
what is wanted. In this case, four relationships were determined but only two are
needed.



Figure 4-8. QuickView default join properties

Right-click on the links for BANFN and BNFPO and select Delete Link
(Figure 4-9).



Figure 4-9. Removing a default join in a QuickView

Double-check the remaining two relationships to make sure they are correct.
Tables EBAN and EKPO should be linked by EBELN and EBELP (Figure 4-
10); these are the purchase order number and the purchase order item.



Figure 4-10. Confirming remaining joins in a QuickView

Click on the Back button. The next screen allows for the selection of fields for
the report. Open the caret on the left to show all the fields for a table (Figure 4-
11).

Figure 4-11. QuickViewer open table

Select the fields to be seen in the first column and the selection parameters for
the table in the second column (Figure 4-12). Choosing fields as selection
parameters enables those fields for filtering the overall results.



Figure 4-12. Selection and list options for a QuickView

Next, repeat the process for the Purchase Document Item table.

Click on the Execute button to run the report. Because the data may be very
large, we made one of the selection criteria the Changed On date. This allows us
to narrow the result data. Set the date range and then click on the Execute
button. For our example, we will select a small one-month set of data just to see



if the results are what we expect. Then we will rerun the report for the full 10
years of data.

Figure 4-13. QuickView test report

The report is displayed with the fields selected (Figure 4-14).

Figure 4-14. QuickView ALV (ABAP List Viewer) report

Click on the Export button (circled in Figure 4-14) and select Spreadsheet.



Figure 4-15. QuickView export options

Accept the default setting for Excel and click Enter (Figure 4-16).

Figure 4-16. QuickView export to xlsx

Format options here will depend on the SAP version, so the screen may look
slightly different. Whatever other formats are visible, make sure to choose
Excel.

Name the file and save it (Figure 4-17).



Figure 4-17. QuickView Save As dialog box

Excel will open automatically. Save it as a CSV file so it can easily be loaded
into R or Python.

Importing with R

If you have not yet done anything with R or R Studio,  there are many excellent
resources online with step-by-step installation guides. It is no more difficult than
installing any other software on your computer. While this book is not intended
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to be a tutorial in R, we will cover a few of the basics to get you started. Once
you have installed R Studio, double-click on the icon in Figure 4-18 to start it.

Figure 4-18. R Studio icon

One of the basic concepts in R is the use of packages. These are collections of
functions, data, and compiled code in a well-defined format. They make coding
much easier and consistent. You will need to install the necessary packages in
order to use them. One of our favorites is tidyverse. There are two ways to
install this package. You can do it from the console window in R Studio using
the install.packages() function as shown in Figure 4-19. Simply hit
Enter, and it will download and install the package for you.

Figure 4-19. Install packages from the console window

The other method of installation is from the menu path Tools → Install
Packages as shown in Figure 4-20.

https://www.tidyverse.org/


Figure 4-20. Install packages from the menu path

Start typing the package name in the Packages line and then select it from the
options, as in Figure 4-21.

Figure 4-21. Select package from the drop-down options

Finish by clicking on the Install button.

Now that you’ve installed one package, let’s start a new script. Click on the
New button and select R Script from the drop-down menu, as in Figure 4-22.



Figure 4-22. Starting a new R Studio script

Now you will have a blank canvas from which to start your data exploration
using the R programming language.

Now, let’s get started. It is easy to import data into R or R Studio using the
read.csv() function. We read the file with the following settings: header
is set to TRUE because we have a header on the file. We do not want the strings
set to factors so stringsAsFactors is set to FALSE.

TIP
It often makes sense to set your strings to factors. Factors represent categorical data and can
be ordered or unordered. If you plan on manipulating or formatting your data after loading it,
most often you will not want them as factors. You can always convert your categorical
variables to factors later using the factor() function.

Finally, we want any empty lines or single blank spaces set to NA:

pr <- read.csv("D:/DataScience/Data/prtopo.csv", 

              header=TRUE, 
              stringsAsFactors = FALSE, 
              na.strings=c("", " ","NA"))



Once the data has loaded we can view a snippet of the file using the head
command, as shown in Figures 4-23 and 4-24.

head(pr)

Figure 4-23. Viewing header dataframe in R

Figure 4-24. Viewing header dataframe in R continued

We can quickly see that some cleanup is in order. The row numbers came in as
columns and some formatting problems created some arbitrary columns such as
X and X.1. Cleaning them up is our first task.

Phase 2: Cleaning Our Data
Our goal in this phase is to remove or correct the obvious errors within the
extraction. By taking the time to clean the data now, we greatly improve the
effectiveness of our analysis and modeling steps. Greg and Paul know that
cleaning can take up a major portion of the EDA time so they hunker down with
R Studio at the ready.

Null Removal

First, we remove all rows where there is no purchase requisition number. This is
erroneous data. There may not actually be any rows to remove, but this is a



good standard process. Making sure that the key features of the data actually
have entries is a good start:

pr <- pr[!(is.na(pr$Purch.Req.)), ]

Binary Indicators

Next, the D and the D.1 columns are our deletion or rejection indicators for the
purchase requisition. Making that a binary will be a true or false indicator. We
can easily do that by making blanks equal to 0 (false) and any other entry equal
to 1 (true). Why use a binary and not just put in text as “Rejected” or “Not
Rejected”? Keep in mind that you will be visualizing and perhaps modeling this
data. Models and visualizations do not do well with categorical variables or text.
However, visualizing and modeling 0 and 1 is easy:

pr = within(pr, { 
  deletion = ifelse(is.na(D) & is.na(D.1), 0, 1)
})

Removing Extraneous Columns
Let’s get rid of the worthless and erroneous columns. Why do this? Why not
simply ignore those columns? Keeping the data free of extra columns frees up
memory for processing. In our current example, this is not truly necessary.
However, later if we build a neural network we want to be as efficient as
possible. It is simply good practice to have clean and tidy  data. We create a list
of column names and assign them to the “drops”variable. Then we create a new
dataframe that is old dataframe with the “drops” excluded:

drops <- c("X.2","X", "Un.1", "Crcy.1", "Per.1", "X.1", 

          "Purch.Req.", "Item", "PO", "Item.1", "D", "D.1", 

          "Per", "Crcy")

pr <- pr[ , !(names(pr) %in% drops)]
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TIP
There are many different types of data structures in R. A dataframe is a table in which each
column represents a variable and each row contains values for each column, much like a table
in Excel.

Whitespace

A common problem when working with data is whitespace. Whitespace can
cause lookup and merge problems later. For instance, you want to merge two
dataframes by the column customer. One data frame column has “Smith
DrugStore” and the other has “ Smith DrugStore”. Notice the spaces before and
after the name in the second dataframe? R will not think that these two
customers are the same. These spaces or blanks in the data look like legitimate
entries to the program. It is a good idea to remove whitespace and other
“invisible” elements early. We can clean that up easily for all columns in the
dataframe with the following code:

pr <- data.frame(lapply(pr, trimws), stringsAsFactors = FALSE)

What is that lapply() function doing? Read up on these useful functions to
get more out of your R code.

Numbers

Next, we modify the columns that are numeric or integer to have that
characteristic. If your column has a numeric value then it should not be stored as
a character. This can happen during the loading of data. Simply put, a value of 1
does not equal the value of “1”. Making sure the columns in our dataframe are
correctly classified with the right type is another one of the key cleaning steps
that will solve potential problems later:

pr$deletion <- as.integer(pr$deletion)

pr$Qty.Requested <- as.numeric(pr$Qty.Requested)

http://bit.ly/2khPSHb


pr$Valn.Price <- as.numeric(pr$Valn.Price)

pr$Net.Price <- as.numeric(pr$Net.Price)

Next, we replace NA values with zeros in the numeric values we just created.
NA simply means the value is not present. R will not assume discrete variables
such as quantity will have a value of zero if the value is not present. In our
circumstance, however, we want the NAs to have a value of zero:

pr[,c("Qty.Requested", "Valn.Price", "Net.Price")] <- 

   apply(pr[,c("Qty.Requested", "Valn.Price", "Net.Price")], 2, 

        function(x){replace(x, is.na(x), 0)})

Finally, we clean up those categorical variables by replacing any blanks with
NA. This will come in handy later when looking for missing values...blanks can
sometimes look like values in categorical variables, therefore NA is more
reliable. We already treated whitespace earlier, but this is another good practice
step that will help us to avoid problems later:

pr <- pr %>% mutate(Des.Vendor = na_if(Des.Vendor, ""), 

                    Un = na_if(Un, ""), 

                    Material = na_if(Material, ""), 

                    PGr = na_if(PGr, ""), 

                    Cat = na_if(Cat, ""), 

                    Document.Type = na_if(Document.Type, ""), 

                    Tax.Jur. = na_if(Tax.Jur., ""), 

                    Profit.Ctr = na_if(Profit.Ctr, ""))

Phase 3: Analyzing Our Data
We’ve cleaned up the data and are now entering the analysis phase. We’ll recall
two key goals of this phase: asking deeper questions to form hypotheses, and
shaping and formatting the data appropriately for the Modeling phase. Greg and
Paul’s cleanup process left them with data in a great position to continue into the
Analysis phase.



DataExplorer

Let’s cheat and take some shortcuts. That is part of the glory of all the libraries
that R has to offer. Some very quick and easy data exploration can be done
using the DataExplorer library.

Install and include the library using the following R commands:

install.packages("DataExplorer")

library(DataExplorer)

Perform a quick visualization of the overall structure of the data (Figure 4-25):

plot_str(pr)
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Figure 4-25. Viewing overall structure of data using DataExplorer

We can use the introduce command from the DataExplorer package to
get an overview of our data:

introduce(pr) 
      rows columns discrete_columns continuous_columns 
   3361850      13                9                  4 
  all_missing_columns total_missing_values complete_rows 
                    0                    0       3361850 
  total_observations memory_usage 
             43704050    351294072

We see that we have over three million rows of data with thirteen columns. Nine
of them are discrete and four of them are continuous.



It is important to see if any of the columns are missing a lot of data. In general,
columns that are largely empty (over 90%) don’t have any value in modeling
(Figure 4-26):

plot_missing(pr)

Because of the large number of missing entries for the Des.Vendor field we
will remove it:

pr$Des.Vendor = NULL



Figure 4-26. Identifying missing or near missing variables with DataExplorer

Discrete Features



Understanding the discrete features  helps in selecting data that will improve
model performance, and removing data that does not. We can plot the
distribution of all discrete features quite easily (Figures 4-27 through 4-29):

plot_bar(pr)

NOTE
Discrete variables with more than 50 entries are excluded.

What we notice right away is that there is a mysterious and obvious erroneous
entry. In the distribution for Document Type there is a document type
called…“Document Type.” Same with all the other discrete features. Let’s find
out where that line is and take a look at it:

pr[which(pr$Document.Type == "Document Type"),]

count(pr[which(pr$Document.Type == "Document Type"),])

What we see is a list and count of 49 entries where the document type is
“Document Type” and all other columns have the description of the column and
not a valid value. It is likely that the extraction from SAP had breaks at certain
intervals where there were header rows. It is easy to remove:

pr <- pr[which(pr$Document.Type != "Document Type"),]
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Figure 4-27. Bar charts of discrete features (part I)



Figure 4-28. Bar charts of discrete features (part II)



Figure 4-29. Bar charts of discrete features (part III)

When we run plot_bar(pr) again we see that these bad rows have been
removed.



We also noticed that some of the variables were not plotted. This is because they
had more than 50 unique values. If a discrete variable has too many unique
values it will be difficult to code for in the model. We can use this bit of code to
see the count of unique values in the variable Material:

length(unique(pr$Material))

Wow, we find that we have more than 500,000 unique values. Let’s think about
this. Will the material itself make a good feature for the model? We also have a
variable Matl.Group, which represents the grouping into which the material
belongs. This could be office supplies, IT infrastructure, raw materials, or
something similar. This categorization is more meaningful to us than an exact
material number. So we’ll remove those material number values as well:

pr$Material = NULL

We also notice from this bar plot that the variable Cat only has one unique
value. This variable will have no value in determining the approval or
disapproval of a purchase requisition. We’ll delete that variable as well:

pr$Cat = NULL

Continuous Features

Next we want to get to know our numeric/continuous variables, such as
Net.Price. Do our continuous variables have a normal bell-shaped distribution?
This is helpful in modeling, because machine learning and neural networks
prefer distributions that are not skewed left or right. Our suspicions are that the
continuous variables are all right skewed. There will be more purchase
requisition requests for one or two items than 20 or 30. Let’s see if that
suspicion is correct.



TIP
Nature loves a uniform/Gaussian distribution. School grades, rainfall over a number of years
or by country, and individual heights and weights all follow a Gaussian distribution. Machine
learning and neural networks prefer these distributions. If your data is not Gaussian, it is a
good choice to log transform, scale, or normalize the data.

We can see a distribution of the data with a simple histogram plot. Using the
DataExplorer package in R makes it easy to plot a histogram of all
continuous variables at once (Figure 4-30):

plot_histogram(pr)



Figure 4-30. Histograms of continuous features

We are only concerned with the histograms for Qty.Requested, Valn.Price, and
Net.Price. The deletion column we know is just a binary we created where 1



means the item was rejected (deleted) and 0 means it was not. We quickly see
that all histograms are right skewed as we suspected. They have a tail running
off to the right. It is important to know this as we may need to perform some
standardization or normalization before modeling the data.

NOTE
Normalization reduces the scale of the data to be in a range from 0 to 1:

X  = X−X X −X

Standardization reduces the scale of the data to have a mean(μ) of 0 and a standard
deviation(σ) of 1:

X  = X−μ / σ

Another test is the QQ plot (quantile-quantile). This will also show us if our
continuous variables have a normal distribution. We know that the distributions
were not normally distributed by the histograms. The QQ plot here is for
illustration purposes.

A QQ plot will display a diagonal straight line if it is normally distributed. In
our observations we can quickly see that these variables are not normally
distributed. The QQ plot in DataExplorer (see Figure 4-31 for interesting
continuous features, and Figure 4-32 for the deletion flag) by default compares
the data to a normal distribution:

plot_qq(pr, sample=1000L)

normalized min / ( max min)

standardized



Figure 4-31. QQ plots of continuous features



Figure 4-32. QQ plots showing the data is not normally distributed

Phase 4: Modeling Our Data



Now that we’ve familiarized ourselves with the data, it’s time to shape and feed
it into a neural network to check whether it can learn if a purchase requisition is
approved or rejected. We will be using TensorFlow and Keras in R to do this.
Greg and Paul know that the Modeling phase is where value actually gets
extracted—if they approach modeling correctly, they know they’ll glean
valuable insight unlocked by following through on the Collect, Clean, and
Analyze phases.

TensorFlow and Keras

Before we dive deep into our model, we should pause a bit and discuss
TensorFlow and Keras. In the data science and machine learning world, they’re
two of the most widely used tools.

TensorFlow is an open source software library that, especially since its 1.0.0
release in 2017, has quickly grown into widespread use in numerical
computation. While high-performance numerical computation applies across
many domains, TensorFlow grew up inside the Google Brain team in their AI
focus. That kind of pedigree gives its design high adaptability to machine
learning and deep learning tasks.

Even though TensorFlow’s hardest-working code is highly tuned and compiled
C++, it provides a great Python and R API for easy consumption. You can
program directly using TensorFlow or use Keras. Keras is a higher level API for
TensorFlow that is user-friendly, modular, and easy to extend. You can use
TensorFlow and Keras on Windows, macOS, Linux, and Android/iOS. The
coolest piece of the TensorFlow universe is that Google has even created custom
hardware to supercharge TensorFlow performance. Tensor Processing Units
(TPUs) were at the heart of the most advanced versions of AlphaGo and
AlphaZero, the game-focused AIs that conquered the game of Go—long
thought to be decades away from machine mastery.

http://bit.ly/2mfiwsY


Core TensorFlow is great for setting up powerful computation in complex data
science scenarios. But it’s often helpful for data scientists to model their work at
a higher level and abstract away some of the lower-level details.

Enter Keras. It’s extensible enough to run on top of several of the major lower-
level ML toolkits, like TensorFlow, Theano, or the Microsoft Cognitive Toolkit.
Keras’ design focuses on Pythonic and R user-friendliness in quickly setting up
and experimenting on deep neural network models. And as data scientists, we
know that quick experiments provide the best results—they allow you to fail
fast and move toward being more correct!

Quick pause over. Let’s dive back into the scenario. We will be using
TensorFlow and Keras in a bit, but first we’ll use basic R programming.

Training and Testing Split

The first step of the process is to split the data into training and testing sets. This
is easy with the library rsample.

tt_split <- initial_split(pr, prop=0.85)

trn <- training(tt_split)

tst <- testing(tt_split)

Looking in the global environments of R Studio shows there are two new
dataframes: TRN for training and TST for testing (Figure 4-33).

Figure 4-33. View of the training and testing dataframes

Shaping and One-Hot Encoding

http://bit.ly/2mk4iHr


We are still in the process of shaping our data for TensorFlow and Keras. We
continue with basic R programming in the next steps. The next steps are to
shape the data such that it will work well with a neural network. Neural
networks, in general, work best on data that is normally distributed. The data
that we are feeding into our network needs to be nominal: we can’t feed the
categorical variables we find in our purchase requisition data into the model.
The network wouldn’t know what to do with something such as “Material
Group.” We will convert our categorical data to sparse data using a process
called one-hot encoding.  For instance, the result of a one-hot encoding for the
Matl.Group column would look like Figure 4-34.

Figure 4-34. Visualization of one-hot encoding

We know that we want to one-hot encode our categorical variables, but what do
we want to do with the others, if anything? Consider the Qty.Requested column,
and the number of options on a purchase requisition for quantity requested. A
purchase requisition for a new vehicle would likely not be more than one.
However, the quantity requested for batches of raw materials might be a
thousand pounds. This makes us curious, what is the range of values in the
Qty.Requested column? We can see that easily with these commands:

max(pr$Qty.Requested)

min(pr$Qty.Requested)
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We see that the values range from 0 to 986. What? Quantities of zero? How
many of them are there?

count(pr[which(pr1$Qty.Requested == 0),])

We see that there are 313 rows with a quantity of 0! What could this mean? We
are confused about this data, so do we throw it out? Data science is not a
vacuum, as much as us coders would like it to be. We have to return to the
business with a couple examples of purchase requisitions with quantities of zero
and ask them if they know why. If they don’t, then we’ll toss the rows with zero
quantities.

We learned something through this process. When Pat is asked about these
strange requisitions he says, “Sometimes when I’m not at my computer and
someone calls about a purchase requisition that I reject, they zero out the
quantity because they don’t have authority to reject the line.” In essence, zero
quantity purchase requisitions are rejected purchase requisitions. We have to
convert the deletion indicator on these to 1 to indicate they are rejected:

pr = within(pr, { 
    deletion = ifelse(Qty.Requested == 0, 1 ,0)
})

Now that we’ve properly dealt with zero quantity purchase requisitions we
return to the task at hand. The model will not perform optimally on individual
variables from 0 to a thousand. Bucketing these order quantities into groups will
allow the model to perform better. We will create three buckets of values. We’ve
chosen this value rather arbitrarily and can change it later as we test the
performance of our model.

Recipes

We’ve decided to one-hot encode our categorical variables and scale and bucket
our numeric ones. To do this we will use the recipes library in R. This very

http://bit.ly/2NHJ9SY


convenient library allows us to create “recipes” for our data transformation.

The recipes concept is intuitive: define a recipe that can be used later to apply
encodings and processing. The final result can then be applied to machine
learning or neural networks.

We’ve already decided what we want to do with our data to prepare it for a
network. Let’s go through the code from the recipes package that will make
that happen.

First we want to create a recipe object that defines what we are analyzing. In
this code we say we want to predict the deletion indicator based on the other
features in our data:

library(recipes)

recipe_object <- recipe(deletion ~ Document.Type + 
                    PGr + 
                    Matl.Group + 
                    Qty.Requested + 
                    Un + 
                    Valn.Price + 
                    Tax.Jur. + 
                    Profit.Ctr, 

                    data = trn)
#We could also just use the . like this to indicate all, but the 
above is done 
#for clarity. recipe_object <- recipe(deletion ~ ., data = trn)

NOTE
If you run into memory errors such as “Error: cannot allocate vector of size x.x Gb” you can
increase the memory allowed by using the following command (the first two numbers indicate
how many gigs you are allocating; in this case, it’s 12):

memory.limit(1210241024*1024)



Our next step is to take that recipe object and apply some ingredients to it.
We already stated that we want to put our quantity and price values into three
bins. We use the step_discretize function from recipes to do that:

TIP
Some modelers prefer binning and some prefer keeping continuous variables continuous. We
bin here to improve performance of our model later.

recipe_object <- recipe_object %>% 
   step_discretize(Qty.Requested, options = list(cuts = 3)) %>% 

   step_discretize(Valn.Price, options = list(cuts = 3))

We wanted to also one-hot encode all of our categorical variables. We could list
them out one at a time, or we could use one of the many selectors that come
with the recipes package. We use the step_dummy function to perform the
encoding and the all_nominal selector to select all of our categorical
variables:

recipe_object <- recipe_object %>% 
  step_dummy(all_nominal())

Then we need to scale and center all the values. As mentioned earlier, our data
is not Gaussian (normally distributed) and therefore some sort of scaling is in
order:

rec_obj <- rec_obj %>% 
  step_center(all_predictors()) %>% 

  step_scale(all_predictors())



TIP
There are many normalization methods; in our example, we use min-max feature scaling and
standard score.

Notice so far that we’ve not done anything with the recipe. Now we need to
prepare the data and apply the recipe to it using the prep command:

recipe_trained <- prep( recipe_object, training = trn, retain = TRUE)

Now we can apply the recipe to any dataset we have. We will start with our
training set and also put in a command to exclude the deletion indicator:

x <- bake(rec_obj, new_data = trn) %>% select(-deletion)

Preparing Data for the Neural Network

Now that we are done with our recipe, we need to prepare the data for the neural
network.

TIP
Our favorite (and commonly excepted best) technique is to not jump directly into a neural
network model. It is best to grow from least to most complex models, set a performance bar,
and then try to beat it with ever more increasingly complex models. For instance, we should
first try a simple linear regression. Because we are trying to classify approved and not-
approved purchase requisitions we may then try classification machine learning techniques
such as a support vector machine (SVM) and/or a random forest. Finally, we may come to a
neural network. However, for teaching purposes we will go directly to the neural network.
There was no a priori knowledge that led to this decision; it is just a teaching example.

First we want to create a vector of the deletion values:

training_vector <- pull(trn, deletion)

http://bit.ly/2Zzy7FX
http://bit.ly/2ZDrK4u


If this is your first time using TensorFlow and Keras you will need to install it.
It is a little different than regular libraries so we’ll cover the steps here. First you
install the package like you would any other package using the following
command:

install.packages("tensorflow")

Then, to use TensorFlow you need an additional function call after the library
declaration:

library(tensorflow)

install_tensorflow()

Finally, it is good process to check and make sure it is working with the
common print hello lines below. If you get the “Hello, TensorFlow!"” statement,
it’s working:

sess = tf$Session() 

 hello <- tf$constant('Hello, TensorFlow!') 

 sess$run(hello)

Keras installs like any other R library. Let’s create our model in Keras. The first
step is to initialize the model, which we will do using the
keras_model_sequential() function:

k_model <- keras_model_sequential()

Models consist of layers. The next step is to create those layers.

Our first layer is an input layer. Input layers require the shape of the input.
Subsequent layers infer the shape from the first input layer. In our case this is
simple, the input shape is the number of columns in our training set ncol(x_trn).
We will set the number of units to 18. There are two key decisions to play with



while testing your neural network. These are the number of units per layer and
the number of layers.

Our next layer is a hidden layer with the same number of inputs. Notice that it is
the same as the previous layer but we did not have to specify the shape.

Our third layer is a dropout layer set to 10%. That is, randomly 10% of the
neurons in this layer will be dropped.

TIP
Dropout layers control overfitting, which is when a model in a sense has memorized the
training data. When this happens, the model does not do well on data it has not seen...kind of
defeating the purpose of a neural network. Dropout is used during the training phase and
essentially randomly drops out a set of neurons.

Our final layer is the output layer. The number of units is 1 because the result is
mutually exclusive. That is, either the purchase requisition is approved or it is
not.

Finally, we will compile the model or build it. We need to set three basic
compilation settings:

Optimizer
The technique by which the weights of the model are adjusted. A very
common starting point is the Adam optimizer.

Initializer
The way that the model sets the initial random weights of the layers. There
are many options; a common starting point is uniform.

Activation
Refer to Chapter 2 for a description of activation functions. Keras has a
number of easily available activation functions.

https://keras.io/initializers/
https://keras.io/activations/


k_model %>% 
  #First hidden layer with 18 units, a uniform kernel initializer, 
  #the relu activation function, and a shape equal to  
  #our "baked" recipe object.  
  layer_dense( 

    units = 18, 

    kernel_initializer = "uniform", 

    activation = "relu", 

    input_shape = ncol(x_trn)) %>% 
 
  #Second hidden layer - same number of layers with 
  #same kernel initializer and activation function. 
  layer_dense( 

    units = 18, 

    kernel_initializer = "uniform", 

    activation = "relu") %>% 
 
  #Dropout 
 layer_dropout(rate = 0.1) %>% 
 
  #Output layer - final layer with one unit and the same initializer 
  #and activation. Good to try sigmoid as an activation here.  
  layer_dense( 

    units = 1, 

    kernel_initializer = "uniform", 

    activation = "relu") %>% 
 
  #Compile - build the model with the adam optimizer. Perhaps the  
  #most common starting place for the optimizer. Also use the  
  #loss function of binary crossentropy...again, perhaps the most  
  #common starting place. Finally, use accuracy as the metric  
  #for seeing how the model performs.  
  compile( 

    optimizer = "adam", 

    loss = "binary_crossentropy", 

    metrics = c("accuracy"))

TIP
Setting the parameters of your neural network is as much an art as it is a science. Play with the
number of neurons in the layers, the dropout rate, the loss optimizer, and others. This is where
you experiment and tune your network to get more accuracy and lower loss.

To take a look at the model, type k_model:



_____________________________________________________________________
______ 
 Layer (type)                       Output Shape                    
Param #      
 
=========================================================================
 
 dense_2 (Dense)                    (None, 18)                      
2646         
 ____________________________________________________________________
_______ 
 dropout_1 (Dropout)                (None, 18)                      0     
 ____________________________________________________________________
_______ 
 dense_3 (Dense)                    (None, 18)                      
342          
 ____________________________________________________________________
_______ 
 edropout_2 (Dropout)               (None, 18)                      0     
 ____________________________________________________________________
_______ 
 dense_4 (Dense)                    (None, 1)                       
19           
 
=========================================================================
 
 Total params: 3,007 
 Trainable params: 3,007 
 Non-trainable params: 0 
 ____________________________________________________________________
_______

The final step is to fit the model to the data. We use the data that we baked with
the recipe, which is the x_trn:

history <- fit( 
    #fit to the model defined above 
  object = k_model, 
      #baked recipe 
  x = as.matrix(x_trn), 
    #include the training_vector of deletion indicators 
  y = training_vector, 
    #start with a batch size of 100 and vary it to see performance 
  batch_size = 100, 
    #how many times to run through? 
  epochs = 5, 
    #no class weights at this time, but something to try 
    #class_weight <- list("0" = 1, "1" = 2) 
    #class_weight = class_weight, 
  validation_split = 0.25)



The model displays a log while it is running:

Train on 1450709 samples, validate on 483570 samples 
Epoch 1/5 
1450709/1450709 [==============================]  
- 19s 13us/step - loss: 8.4881e-04 - acc: 0.9999 - 
val_loss: 0.0053 - val_acc: 0.9997 
Epoch 2/5 
1450709/1450709 [==============================]  
- 20s 14us/step - loss: 8.3528e-04 - acc: 0.9999 - 
val_loss: 0.0062 - val_acc: 0.9997 
Epoch 3/5 
1450709/1450709 [==============================]  
- 19s 13us/step - loss: 8.5323e-04 - acc: 0.9999 - 
val_loss: 0.0055 - val_acc: 0.9997 
Epoch 4/5 
1450709/1450709 [==============================]  
- 19s 13us/step - loss: 8.3805e-04 - acc: 0.9999 - 
val_loss: 0.0054 - val_acc: 0.9997 
Epoch 5/5 
1450709/1450709 [==============================]  
- 19s 13us/step - loss: 8.2265e-04 - acc: 0.9999 - 
val_loss: 0.0058 - val_acc: 0.9997

Results

What we want from our model is for the accuracy to be high and for it to
improve over the number of epochs. However, this is not what we see. Note the
second graph in Figure 4-35. We see that the accuracy is very high from the start
and never improves. The loss function also does not decrease but stays
relatively steady.

This tells us that the model did not learn anything. Or rather, it learned
something quickly that made it very accurate and quit learning from that point.
We can try a number of tuning options, perhaps different optimizers and loss
functions. We can also remodel the neural network to have more or less layers.
However, let’s think at a higher level for a minute and turn back to the raw data
with some questions.

Did we select the right features from SAP from the beginning? Are there any
other features that might be helpful?



Figure 4-35. Accuracy and loss results from the model learning

Did we make mistakes along the way or did we make assumptions that were
incorrect? This requires a review of the process.

Is this data that can be modeled? Not all data is model ready.

After going through these questions we stumble upon this. What if the number
of approved purchase requisitions is overwhelming? What if the model just
learned to say “Yes” to everything because during training it was nearly always
the right answer? If we go back and look at the numbers before any modeling,



we see that Pat approves over 99% of all purchase requisitions. We can try
different models and different features in our data, but the likely truth to this
data exploration saga is that this data cannot be modeled. Or rather it can be
modeled, but because of the high number of approvals the model will learn only
to approve. It will find it has great accuracy and low loss and therefore on the
surface it is a good model.

Summary
Despite the failure to model the purchase requisition data, this example teaches
a lot of good lessons. Sometimes data can’t be modeled, it just happens...and it
happens a lot. A model that has high accuracy and low loss doesn’t mean it is a
good model. Our model had 99% accuracy, which should raise a suspicious
eyebrow from the start. But it was a worthless model; it didn’t learn. A common
role of a data scientist is to report on findings and to propose next steps. We
failed, but we failed fast and can move past it toward the right solution.

It could be argued that Greg and Paul failed Pat. After all, we can’t make any
good predictions based on the data we found and explored. But just because we
didn’t find a way to predictively model the scenario doesn’t mean we failed. We
learned! If data science is truly science, it must admit negative results as well as
positive. We didn’t learn to predict purchase requisition behavior, but we did
learn that trying to do so wouldn’t be cost effective. We learned that Pat and his
colleagues have created solid processes that make the business very disciplined
in its purchasing behavior.

In exploratory data analysis, the only failure is failing to learn. The model may
not have learned, but the data scientists did. Greg and Paul congratulate
themselves with an extra trip to the coffee machine.

In this chapter we have identified a business need, extracted the necessary data
from SAP, cleansed the data, explored the data, modeled the data, and drawn
conclusions from the results. We discovered that we could not get our model to



learn with the current data and surmised this was because the data is highly
skewed in favor of approvals. At this point, we are making educated guesses;
we could do more.

There are other approaches we could take. For instance, we could augment the
data using encoders, which would be beyond the scope of this book. We could
weight the variables such that the rejected purchase requisitions have greater
value than the accepted ones. In testing this approach, however, the model
simply loses all accuracy and fails for an entirely different reason. We could also
treat the purchase requisitions that are rejected as anomalies and use a
completely different approach. In Chapter 5, we will dig into anomaly detection,
which might provide other answers if applied to this data.

We have decided that the final course of action to be taken in our example is not
a data approach (much to our chagrin). The business should be informed that
because over 99% of all purchase requisitions are approved, the model could not
find salient features to determine when a rejection would occur. Without
significantly more work, this is likely a dead end. Perhaps there are different IT
solutions, such as a phone app that could help Pat do his job more efficiently.
The likely solution, however, cannot be found through machine learning and
data science.

1  For instructions on how to install R Studio and R, go to
https://www.rstudio.com/products/rstudio/download/.

2  We have referenced this before, but we’ll link to it again (it is that good):
https://vita.had.co.nz/papers/tidy-data.pdf.

3  Dive deep into DataExplorer using the vignette available at https://cran.r-
project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html.

4  Remember from Chapter 2 that discrete or categorical features are features with definable
boundaries. Think categories such as colors or types of dogs.

5  Sometimes called creating “dummy variables.”

https://www.rstudio.com/products/rstudio/download/
https://vita.had.co.nz/papers/tidy-data.pdf
https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html


Chapter 5. Anomaly
Detection with R and Python

McKesson Corporation (McKesson), one of the nation’s largest
distributors of pharmaceutical drugs, agreed to pay a record $150
million civil penalty for alleged violations of the Controlled
Substances Act (CSA), the Justice Department announced today.

—Department of Justice, January 17, 2017

Upon reading those headlines, Janine’s heart sank. She read the
article with rapt attention; this affected her. She worked in the
regulatory department at Big Bonanza Warehouse where she was
responsible for maintaining corporate compliance. She was aware of
Suspicious Order Monitoring Regulations (21 C.F.R. 1301.74(b)).
Lately the Department of Justice was hitting companies left and right
for noncompliance with this regulation, much more than they had
done in the past. The regulation loosely states that companies that
manufacture and distribute controlled substances “know their
customers.” In the regulation’s exact words,

It is fundamental for sound operations that handlers take
reasonable measures to identify their customers, understand the
normal and expected transactions typically conducted by those
customers, and, consequently, identify those transactions
conducted by their customers that are suspicious in nature.

—21 C.F.R. 1301.74(b)

http://bit.ly/2lRRCHu


But what exactly did this mean? She knew that her company had their
sales orders in SAP. There were over 10 years of sales orders. But
what did it mean to understand the normal and expected transactions



Chapter 6. Predictive
Analytics in R and Python

The team at Big Bonanza Warehouse is running into some problems
with sales forecasting, and the VP of Sales has turned to Duane, who
works as a Sales and Distribution Analyst, for some help. About once
per quarter they gather their data and send it to an outside company
that performs some magic on it. The result is a forecast of all their
products for the upcoming quarters, but they’ve found that the
forecast being generated for them is too generic (based on quarters)
and often woefully inaccurate. Couldn’t they get something that
would help them understand what sales might be next week? To put it
succinctly, they want a forecast of sales of their top-selling products
by week.

Duane has some ideas. Having worked with his company’s data
scientists Greg and Paul, he knows a little bit about data science.
Sales of a product over a period is a time-series  problem. They have
enough historical data to attempt to look for patterns. This is not pure
forecasting, but pattern detection. It is something that the sales team
could use, rather than their gut feelings. Duane decides to use a bit of
predictive analytics. With the right set of R or Python tools and some
up-front knowledge of predictive analytics, Duane won’t need to
spend months of time paying expensive consultants to build massive
data lakes. He can get his hands dirty and find answers.

1



There are many slippery terms in data science (including data science
itself!), but predictive analytics owns a special share of un-
graspability. You may have heard of the now infamous “prediction”
tale. Retail giant Target predicted a teenager’s pregnancy before her
father even knew. In case you haven’t heard the story... Target started
sending baby coupons to a teenage girl. Her father complained that
they were encouraging her daughter to get pregnant. The reality was,
the girl was already pregnant. Did Target predict this teenager’s
pregnancy? The answer is no. This is not a prediction; this is
inference or classification. The features they use are the shopping
behaviors of their customers. The buying habits of the teenage girl
led the classification algorithm to put her in the category “pregnant.”

The point of this story is to highlight two common uses of the word
prediction. One of those predictions is statistical inference and the
other is forecasting. Let’s be honest here, you can debate these
definitions ad nauseum. For our purposes, we will draw a line in the
sand between forecasting and inference. Prediction for us will be
forecasting.  Let’s make sure we have a common understanding of
the term: prediction is the act of predicting the future.

The litmus test for determining if the analysis falls into prediction is
to ask, “Has the event occurred?” If it has, then, from our definition,
it is likely something other than prediction.

Below are some examples of common topics and exercises in data
science learning materials that are often mislabeled as predictions:

Predicting Boston housing value
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This is a classification/inference problem based on the features of
a given property such as location, square footage, number of
bedrooms, etc.

Predicting the survival rate on the Titanic

This is another classification/inference problem based on features
such as sex, cabin number (location), number of family members,
embarking point, and others.

Predicting fraudulent credit card behavior

This is an anomaly detection problem determining if the behavior
of the card holder falls within tolerance. It’d be more descriptive
to call it “detecting fraudulent credit card behavior.”

Predicting why and when a patient will readmit

This sounds very close to prediction. It is another
classification/inference problem based on patients that have
already readmitted. If their features match the features of a
patients not yet readmitted, there is a likelihood they will readmit.

Some examples of topics and exercises that are properly labeled as
predictions:

Predicting Boston housing value next year

Next year’s house values is a classification of the current value of
the home based on certain features. This classification merges
with other salient data such as GDP to make a future prediction.

Predicting future stock value

You figure this one out...let us know. Many different sources of
data contribute to predicting a stock’s performance. A company’s
quarterly performance reports in EDGAR  is a good starting
point.
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Predicting Sales in R
In this chapter, we will walk through Duane’s exercise in predictive
analytics and try to do sales order predictions. We will follow the
process in Figure 6-1 for this mission.

Figure 6-1. Flow for data analysis and prediction

Step 1: Identify Data

Not ready to completely fly on his own, Duane approached the data
science team to obtain better metrics for predicting sales in the near
and semi-near future—the upcoming weeks, months, quarters, and as
far out as one year. Prediction accuracy becomes more volatile the
further out we get. Quite simply, it is much easier to predict
tomorrow’s sales because we know yesterday’s. However, it is not the
same to say we can predict next year’s sales because we knew last
year’s. What we do know is that we will have sales data for a list of
products over time.

Step 2: Gather Data



Our source of data is SAP. We will extract the data using the same
method used in Chapter 4. Using an ABAP QuickViewer Query, we
gather simple sales data from the VBAP and VBAK tables. We will
take only the created date ERDAT from VBAK. We will take
MATNR (material) and KWMENG (quantity sold) from table VBAP.

Step 3: Explore Data

Once we have exported the data as a CSV file from SAP we will read
it into R to take a look at it:

sales <- read.csv('D:/DataScience/Data/Sales.csv')

Let’s take a look at the first 10 rows:

head(sales) 
 
 
   X DailySales Material       ReqDeliveryDate 
 1 0   48964.75     1234 /Date(1420416000000)/ 

 2 1   30853.88     1234 /Date(1420502400000)/ 

 3 2   65791.00     1234 /Date(1420588800000)/ 

 4 3   17651.20     1234 /Date(1420675200000)/ 

 5 4   36552.90     1234 /Date(1420761600000)/ 

 6 5    5061.00     1234 /Date(1420848000000)/

We see two things right away. The rows came in under column X, we
don’t need that. Also, the date field came in oddly, it looks like UNIX
time and we need to convert it. When we look into it further we see it
is indeed UNIX, but it is padded on the end with three unnecessary
zeros. Let’s correct these before moving on:



#Remove the X column
sales$X <- NULL
#Remove all nonnumeric from the date column
sales$ReqDeliveryDate <- gsub("[^0-9]", "", 

sales$ReqDeliveryDate)
#Convert the unix time to a regular date time using the 
anytime library
library(anytime)
#First trim the whitespace
sales$ReqDeliveryDate <- trimws(sales$ReqDeliveryDate)
#Remove the final three numbers
sales$ReqDeliveryDate <- gsub('.{3}$', '', 

sales$ReqDeliveryDate)
#Convert the field to numeric
sales$ReqDeliveryDate <- as.numeric(sales$ReqDeliveryDate)
#Convert the unix time to a readable time
sales$ReqDeliveryDate <- anydate(sales$ReqDeliveryDate)

Now that we’ve done some manipulation let’s take a look at the
structure of our data. Use the function str() to view the structure of
the data:

str(sales) 
 'data.frame': 2359 obs. of 3 variables: 
  $ DailySales  : num 48965 30854 65791 17651 36553 ... 
  $ Material    : int 1234 1234 1234 1234 1234 1234 1234 
1234 1234 1234 ... 
  $ ReqDeliveryDate: Date, format: "2015-01-04" "2015-01-05" 
"2015-01-06"  ...

We see that we have a dataframe with 2,359 observations of three
variables. Let’s find the distribution of the materials in the dataframe.
Use the following command from the ggplot2 library (this renders
in Figure 6-2).

ggplot(sales, aes(Material)) + geom_bar()



Figure 6-2. The distribution of materials in our sales data

We have the data in a format we’d like. Now it is time to plot and
explore the data.

Step 4: Model Data

We will use the ggplot2, dplyr, and scales libraries from R to
model our data. These are some of the most useful and versatile
packages in the R ecosystem:

https://ggplot2.tidyverse.org/
http://bit.ly/2lRCudc
http://bit.ly/2lRCudc


library(ggplot2)

library(dplyr)

require(scales)

First let’s do some up-front work. We want our chart to have nice
numbers, so we use the format_format function from scales to
define this for us. The effect of this function is to simply format our
numbers such that the decimal is a period, the thousands break is a
comma, and scientific notation is not used.

point <- format_format(big.mark = ",", decimal.mark = ".", 

scientific = FALSE)

Let’s simply plot the sales of the materials over time:

sales %>% 
  ggplot(aes(x=ReqDeliveryDate, y=DailySales)) + 

  geom_point(color = "darkorchid4") + 

  scale_y_continuous(labels = point) + 

  labs(title = "Sales over time", 

       subtitle = "sales for all materials", 

       y = "Sales Quantities", 

       x = "Date") + 

  theme_bw(base_size = 15)

In human-speak this R code says, “Take the sales dataframe and send
it (“%>%”) to ggplot. Make the x-axis the ReqDeliveryDate
and the y-axis the DailySales. Use points with a color palette of
darchorchid4. Then scale the y to have the point format.
Finally, label everything nicely and give it a basic theme and size.”
The results are shown in Figure 6-3.



Figure 6-3. Sales for all materials over time

This gives us an idea of the distribution of sales over time, but it
mixes the materials and points aren’t the best for plotting a time



series. Let’s break out the materials and choose line instead of point.
We see the results in Figure 6-4.





Figure 6-4. Sales for materials broken out by color over time

This is better, but the materials are still too mixed to be clear. Perhaps
we need to break them out completely. ggplot2’s facet_wrap
does this nicely. The following code produces the chart in Figure 6-5:

sales %>% 
  ggplot(aes(x=ReqDeliveryDate, y=DailySales, color)) + 

  geom_line(color = "darkorchid4") + 

  facet_wrap( ~ Material) + 

  scale_y_continuous(labels = point) + 

  labs(title = "Sales over time", 

       subtitle = "sales for all materials", 

       y = "Sales Quantities", 

       x = "Date") + 

  theme_bw(base_size = 15)



Figure 6-5. Sales of material over time broken up so we can see each plot separately

We can more easily see now the distributions of each of the materials.
We can quickly spot that two of these materials only recently began



to sell.

Let’s focus on just one material, 1234. We will add a simple linear
model using the geom_smooth function. We only have one material
here, but we leave in facet_wrap because it makes such a nice
header (the results are shown in Figure 6-6).

sales %>% 
  subset(Material == '1234') %>% 

  ggplot(aes(x=ReqDeliveryDate, y=DailySales, color)) + 

  geom_line(color = "darkorchid4") + 

  facet_wrap( ~ Material ) + 

  geom_smooth(method = "lm") + 

  scale_y_continuous(labels = point) + 

  labs(title = "Sales over time", 

     subtitle = "sales for all materials", 

     y = "Sales Quantities", 

     x = "Date") + 

  theme_bw(base_size = 15)



Figure 6-6. Sales over time with a simple linear mapping

We are curious about how these sales by year match up against one
another. The line chart makes it difficult to see if overall sales by



week are greater in 2015 than they are in 2018.

Let’s sit back and approach this in an intuitive way. There are many
important concepts in R programming, but two of the most influential
are Tidy Data and Split-Apply-Combine.

SIMPLE DATA ANALYSIS STRATEGIES
Hadley Wickham described these two influential data analysis software concepts in the Journal of
Statistical Software. Follow these and you can’t go wrong.

Tidy Data (from https://vita.had.co.nz/papers/tidy-data.pdf).

“Each variable forms a column.”

“Each observation forms a row.”

“Each type of observational unit forms a table.”

The tidyverse package applies all the tidy data concepts.

 
library(tidyverse)

Split-Apply-Combine (from https://vita.had.co.nz/papers/plyr.pdf)

“Break up a big problem into manageable pieces.”

“Operate on each piece independently.”

“Put all the pieces back together.”

The library most applicable for this, dplyr, will be put to use later in this chapter.

Understanding these concepts will help you think through problems
more easily. We will simply split our sales dataframe into one that
we can more easily plot with. First we will copy our sales data into a
subsetted dataframe for just our material:

https://vita.had.co.nz/papers/tidy-data.pdf
https://vita.had.co.nz/papers/plyr.pdf


sales_week <- sales %>% subset(Material == '1234')

Secondly, we need to make a week variable and a year variable from
our date variable. This is easy in R with the base function
strftime:

sales_week$week <- strftime(sales_week$ReqDeliveryDate, 

format = '%V')

sales_week$year <- strftime(sales_week$ReqDeliveryDate, 

format = '%Y')

We no longer need the ReqDeliveryDate or the Material:

sales_week$ReqDeliveryDate <- NULL
sales_week$Material <- NULL

We also want to aggregate our weeks into one bucket. We may have
had multiple sales for a given week in our sales dataframe, which
we want in only one week in our sales_week dataframe:

sales_week <- sales_week %>% group_by(year, week) %>% 

summarise_all(sum)

If we look at our dataframe now it has these columns:

 
 head(sales_week) 
 # A tibble: 6 x 3 
 # Groups:   year [1] 
   year week DailySales 
   <chr> <chr>      <dbl> 
 1 2015 01        48965. 
 2 2015 02       173920. 



 3 2015 03       213616. 
 4 2015 04       243433. 
 5 2015 05       304793. 
 6 2015 06       265335.

Now we can use ggplot2 again to see what the sales year over year
look like when the weeks are compared (the results are in Figure 6-
7):

sales_week %>%  
  ggplot(aes(x = week, y = DailySales, group = year)) + 
  geom_area(aes(fill = year), position = "stack") + 
  labs(title = "Quantity Sold: Week Plot", x = "", y = 
"Sales") + 

  scale_y_continuous() + 

  theme_bw(base_size = 15)

Figure 6-7. Area chart of sales by year



This chart shows us something that we couldn’t see clearly before.
The spikes and valleys of each year’s sales are strongly correlated.
Such a strong correlation between the years would lead us to believe
we can model based on that pattern. 2018 did not have a full recorded
year of sales so that chart stops on week 29. We also see a distinct
uptick in sales between weeks 35 and 40 and 4 and 9.

To move further in our exploration we need to visit a base object in
R, the ts (time-series) object. It is an array of values over time
periods. What we have been working with thus far is a dataframe. It
is easy to convert a data.frame to a ts object in R. This function
takes the data itself as its first argument and then has a series of other
arguments we will cover now. Type args(ts) into the console to
see a list of arguments for the base ts function:

args(ts)
function (data = NA, start = 1, end = numeric(), frequency = 
1, 

    deltat = 1, ts.eps = getOption("ts.eps"), class = if 

(nseries > 
        1) c("mts", "ts", "matrix") else "ts",  

        names = if (!is.null(dimnames(data)))  
        colnames(data) else paste("Series", 
        seq(nseries)))

The arguments that we will use are:

The start and end arguments define the starting date and
ending date of the ts object.

The frequency argument specifies the number of
observations per unit of time.



In order to do this more easily and clearly we need to reformat our
dataframe. This will lead to a nice clean ts object.

This time we will do an analysis by month. Just like we did with the
week-by-week analysis, we will subset the sales dataframe.
However, this time we will rename the columns so they are easier to
use and remember:

sales_month <- sales %>% subset(Material == '1234') 
 sales_month$Material <- NULL 
 colnames(sales_month) <- c('sales', 'date')

Also, ts objects do not like gaps. If you are going to analyze data by
days, ts objects want every day represented...even if there is no data
for that day. If you are going to analyze data by minutes, likewise
every minute has to have a presence. For instance, if there were no
sales of this material for a particular day there will be a gap in the
date sequence. We want to fill all of these gaps with 0 because that is
how much was actually sold on that day. First we create a new
dataframe with all the possible dates starting at our first day of our
sales_month and ending with the last:

all_dates = seq(as.Date(min(sales_month$date)), 
                as.Date(max(sales_month$date)), 
                by="day")

Then we want to merge this dataframe with sales_month:

sales_month <- merge(data.frame(date = all_dates), 



                      sales_month, 

                      all.x=T, 

                      all.y=T)

Let’s take a look at our data:

head(sales_month, n=10) 
         date    sales 
 1  2015-01-04 48964.75 
 2  2015-01-05 30853.88 
 3  2015-01-06 65791.00 
 4  2015-01-07 17651.20 
 5  2015-01-08 36552.90 
 6  2015-01-09 5061.00 
 7  2015-01-10       NA 
 8  2015-01-11 18010.00 
 9  2015-01-12 24015.00 
 10 2015-01-13 39174.25

We notice right away that we have NAs in our data. This is for the
days when there were no sales. Let’s replace that with zeros:

sales_month$sales[is.na(sales_month$sales)] = 0

Now it is easy to create a ts object. Frankly, ts objects in R have
always been a bit of a quandary. Follow our advice—take the time to
nicely and simply format your dataframe and you’ll breeze through
the ts object part:

require(xts)

sales_ts <- xts(sales_month$sales, order.by = 

as.Date(sales_month$date))



Now that we have a nicely formatted ts object, we can do some
simple charting on it:

plot(sales_ts)





Figure 6-8. Simple plot of ts object

We can also see monthly sales and averages easily. Looking at the
average sales across months in Figure 6-9 we can see that the overall
sales amount is relatively equal despite the peaks and valleys:

monthplot(sales_ts)



Figure 6-9. Month plot of ts object

PLOTS FOR PREDICTION

There are three types of simple plots that we typically want to use in
predictive analytics: mean, naive, and drift. Let’s examine each of
these.



The first plot is a simple prediction of the mean into the future. This
prediction assumes that the average of past sales will continue to be
the average. To make these charts we will need the forecast
library. We see the results of the mean forecast in Figure 6-10:

library(forecast)

sales_ts <- ts(sales_month$sales)  

sales_ts_mean = meanf(sales_ts,h=35,level=c(90,90),  

                      fan=FALSE, lambda = NULL)
plot(sales_ts_mean)

You may wonder what the gray rectangular area of the chart (at far
right) is telling you. The gray area is the confidence interval, which
by default is 95%. The line in the middle of the gray area indicates
where the prediction should fall, the gray area says, “I am 95%
confident that the value, if not on the line, is within the grey area.” As
may be assumed, a 95% confidence interval is pretty high so the area
must therefore be large enough to ensure this.
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Figure 6-10. Simple mean prediction with confidence intervals

The naive assumption is that the sales will be the same as the last
observation as seen in Figure 6-11:



sales_ts_naive <- naive(sales_ts,h=35,level=c(90,90), 
                         fan=FALSE,lambda=NULL)
plot(sales_ts_naive)

Figure 6-11. Simple naive prediction with confidence intervals



Finally, we can view the drift of the chart easily with the forecast
library. Drift starts with the naive beginning, but then is adjusted
positively or negatively based on the average overall change in the
data. We see the results in Figure 6-12. Notice the ever so slight
downward trend:

sales_ts_drift <- rwf(sales_ts,h=35,drift=T,level=c(90,90), 

                      fan=FALSE,lambda=NULL)
plot(sales_ts_drift)



Figure 6-12. Simple drift prediction with confidence intervals

Clearly these plots are not going to be satisfying to the VP of sales,
but it is the start of our prediction process and we will refine this
process until we have results we like.



Step 5: Evaluate Model

First, let’s analyze the accuracy of the three plots that we just created.
With the forecast package this is easy, but before we do that we
need to discuss how accuracy can be measured. There are six ways
we will analyze accuracy, and Table 6-1 illustrates the most
commonly used measurements.



Table 6-1. Measures of acccuracy
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M
E

Mean error: the average of the total number of errors in predictions. 
The positive errors have the potential of wiping out the negatives.

mea
n(e )

M
A
E

Mean absolute error: measurement of the mean of the errors in 
predictions. This does not take into consideration whether it is over or 
under…just the magnitude of the error.

mea
n(|e |
)

R
M
S
E

Root mean squared error: same as the MAE but errors are squared 
before the square root of the total is taken. This results in large errors 
having more value than small errors. Consider this an improvement 
over MAE if you want to strongly penalize large errors.

SQR
T(m
ean(
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M
P
E

Mean percentage error: the mean of the percentage of the errors.
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)

M
A
P
E

Mean absolute percentage error: the mean of the absolute percentage of 
the errors.
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M
A
S
E

Mean absolute scaled error: the mean of the absolute values of the 
scaled  (q) errors. Scaling is an alternative to percentage errors. A 
MASE of > 1 indicates the prediction is worse than the naive 
prediction. If it is < 1 it is better.

mea
n(|q |
)

a  MASE was proposed in 2005 by statistician Rob Hyndman and is used for 
determining comparative accuracy of forecasts.

We can view these values easily with the forecast package (see
Table 6-2):

accuracy(sales_ts_mean)

accuracy(sales_ts_naive)

accuracy(sales_ts_drift)

Table 6-2. Measures of accuracy for mean, naive, and drift 
forecasts

 ME RMSE MAE MPE MAPE MASE

Mean -2.46E-13 28535.31 23019.78 -Inf Inf 1

Naïve -33.81419 31653.02 23017.03 -Inf Inf 1

Drift 1.25E-12 31653 23021.87 NaN Inf 1.00021

What are good values for these evaluations? Consider that every set
of data is different and has different scales. Data in one experiment
might have a range of 1 to 1,000,000 and the RMSE is 10, which
seems pretty good. However, the same RMSE value if the data has a
range of 1 to 20 is terrible. Because of this, consider using your
evaluation methods as a comparison between different plots and tests;
avoid the pitfall of blindly seeing small evaluation results as good. In

i
a

http://bit.ly/2ZKRo7z


the simple methods we just looked at, the mean seems to pull ahead.
Our results also shows us some of the dangers of using percentages.
There is a risk of division by zero or near zero, which leads to infinite
values.

Another thing we can look for in our data is seasonality. This is a
different way to explore the data that is made much easier using the
tseries  library. Is there some kind of pattern based on a recurring
event? An example of seasonality in a time series would be the sales
of mittens. Clearly sales of mittens increase in the winter and
decrease in the summer. Another way of stating this is to say that the
data is either stationary or not stationary. Stationary data is
independent of the actual time series. We can test for stationarity or
nonstationarity with the tseries package by using the adf.test
method:

library(tseries)

sales_ts_adf <- adf.test(sales_ts)  
sales_ts_adf

The result we get indicates clearly that the data is stationary (has no
seasonality):

Augmented Dickey-Fuller Test
data: sales_ts[, 1]

Dickey-Fuller = -5.8711, Lag order = 10, p-value = 0.01
alternative hypothesis: stationary

Now it is time to do some predictions that are better than mean,
naive, or drift. We will use the ARIMA model to start with. ARIMA

5
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stands for Autoregressive Integrated Moving Average. ARIMA is a
prediction (forecasting) technique that projects the future values of a
series depending on its previous data points. Like the name says, it
uses a moving average. First we create the future values with the
following command:

sales_future <- forecast(auto.arima(sales_ts))

To better understand the results, let’s take a look at the structure of
the time series object we are working with. Use the str()
command:

> str(sales_ts)
An 'xts' object on 2015-01-04/2018-07-20 containing: 
  Data: num [1:1294, 1] 48965 30854 65791 17651 36553 ... 
  Indexed by objects of class: [Date] TZ: UTC 
  xts Attributes: NULL

This tells us that we have 1,294 objects in our time series. Our
forecast function will plot out another 10 values into the future.
This gives us the following sales values with confidence intervals of
80 and 95. Let’s look at time series object 1300 as an example. This
tells us that the forecast is 20892.628 with a Lo 80 of -8393.256 and a
Hi 80 of 50178.51. This means that we are 80% confident sales will
be between $-8,393.256 and $50,178.51. A confidence interval of 95
is obviously wider to account for a higher degree of confidence and
therefore has a higher range of $-23,896.27 to $65,681.52:

 
      Point Forecast      Lo 80    Hi 80     Lo 95    Hi 95 
 1295        907.887 -26883.351 28699.12 -41595.14 43410.92 



 1296      11811.826 -16743.171 40366.82 -31859.27 55482.93 
 1297      21790.271 -6768.050 50348.59 -21885.91 65466.45 
 1298      23937.037 -5022.613 52896.69 -20352.92 68227.00 
 1299      25546.677 -3730.630 54823.98 -19229.10 70322.46 
 1300      20892.628 -8393.256 50178.51 -23896.27 65681.52 
 1301      10542.993 -19636.125 40722.11 -35611.98 56697.97 
 1302       5537.931 -27502.193 38578.06 -44992.58 56068.44 
 1303      10655.408 -24005.266 45316.08 -42353.52 63664.34 
 1304      19295.901 -15714.125 54305.93 -34247.31 72839.12

Now let’s plot this chart. This time we will have a starting point that
is later than the beginning of the chart so we don’t have such a small
prediction interval. We will only plot the time series from point 750
to 1304. The results in Figure 6-13 show the point value in a dark
line, the 80% confidence interval in a light shading, and the 90%
confidence interval in an even lighter shading:

plot(sales_futue, xlim = c(750,1304))





Figure 6-13. ARIMA forecasting

We’ve done a bit of prediction so far and learned a lot along the way.
Perhaps we should sit back and look at our data and wonder if this
ARIMA is good enough as it is? Should we try something new? What
comes to mind when you look at Figure 6-13? When we look at it we
see those flat lines on the bottom. That is where we put in missing
dates, those dates when the material has zero sales. Should that be
included in the model that does the prediction? In many cases the
answer would be no. However, there is a good argument here that
sales of zero are important. Any day of sale is a data point as well as
any day of nonsales.

Next we will shift to a different language and a different model. We
will take the same series of data that we explored in R and perform
the same five-step analysis in Python.

Predicting Sales in Python
There are many ways to analyze data using different tools such as
Python and R. In this section we will approach the same data from a
Python perspective.

Step 1: Identify Data

This time we will use a quick OData utility class that could speed up
future identify-gather phases. We will use OData and Python to help
predict future sales for upcoming weeks, months, and up to a year.
This identification phase is the same as what we did for R earlier.



Step 2: Gather Data

Remember Chapter 3 when we created an example OData service for
listing plants out of the SAP backend? We’re going to do exactly the
same thing here—only with some adjusted structures, fields, and a
little bit of ABAP code to make the pull easy. Most importantly,
defining a process in this way will allow you to programmatically
gather different sets of materials and date ranges with ease! We’ll
highlight the major differences here versus the approach as laid out in
Chapter 3.

First, create a structure in transaction SE11 and choose the fields
from Figure 6-14 to populate it. We’re going to give this the same
basic shape as the R example from before.

Figure 6-14. SE11 structure for the sales data



Next, go to transaction SEGW to create a new OData service and
enter project details as noted in Figure 6-15.

Figure 6-15. OData service details from SEGW

Remember to import the structure we created, just like in Chapter 3.
See Figures 6-16, 6-17, and 6-18 for settings to use.



Figure 6-16. Importing the SE11 structure into a new OData service

Figure 6-17. Choose all the available fields to import



Figure 6-18. MATERIAL and REQ_DELIVERY_DATE are the key fields

Again just like Chapter 3, redefine the GetEntitySet (Query)
method for the entity we just created. Use the following ABAP code
to set up a quick filtering operation on sales order item data.
Remember, as discussed before: we won’t dive deep into
explanations of ABAP code in this book. If you’re a data scientist
who really wants SAP data and you don’t have a SAP team to help
you, then you might wish to supplement this material with some of
the ABAP basics available on SAP’s free training site,
https://open.sap.com:

"This code will return a list of sales dollars by date per 
material.  
"The filtering mechanism for OData allows us to limit this 
to a subset  
"of materials, and the below Python code incorporates this 
feature. 
  
"If you named your entity set differently than our example 
screenshots,

https://open.sap.com/


"this method will be named differently. 
METHOD dailymaterialsal_get_entityset. 
  DATA lr_matnr TYPE RANGE OF matnr. 
  DATA ls_matnr LIKE LINE OF lr_matnr. 
  DATA lr_vdatu TYPE RANGE OF edatu_vbak. 
  DATA ls_vdatu LIKE LINE OF lr_vdatu. 
 
   "Here we extract the filters that our Python code will 
insert. 
  LOOP AT it_filter_select_options INTO DATA(ls_select). 
    IF ls_select-property EQ 'Material'. 
      LOOP AT ls_select-select_options INTO DATA(ls_option). 
        MOVE-CORRESPONDING ls_option TO ls_matnr. 
        ls_matnr-low = |{ ls_option-low ALPHA = IN }|. 
        APPEND ls_matnr TO lr_matnr. 
      ENDLOOP. 
    ELSEIF ls_select-property EQ 'ReqDeliveryDate'. 
      LOOP AT ls_select-select_options INTO ls_option. 
        MOVE-CORRESPONDING ls_option TO ls_vdatu. 
        ls_vdatu-low = |{ ls_option-low ALPHA = IN }|. 
        APPEND ls_vdatu TO lr_vdatu. 
      ENDLOOP. 
    ENDIF. 
  ENDLOOP. 
  
  "This SELECT statement incorporates the filters that are 
sent by the 
  "Python code below into the SQL logic. For example, if the 
programmer 
  "enters 3 materials to filter, then the variable 
'lr_matnr' contains 
  "a reference to those 3 materials to pass to the database 
engine. 
  SELECT item~matnr AS material 
         head~vdatu AS req_delivery_date 
         SUM( item~netpr ) AS daily_sales 
    FROM vbak AS head 
      INNER JOIN vbap AS item ON head~vbeln = item~vbeln 
      INNER JOIN knvv AS cust ON head~kunnr = cust~kunnr 
        AND head~vkorg = cust~vkorg 
        AND head~vtweg = cust~vtweg 
        AND head~spart = cust~spart 
      INNER JOIN mara AS mtrl ON item~matnr = mtrl~matnr 
    INTO CORRESPONDING FIELDS OF TABLE et_entityset 
     WHERE head~vdatu IN lr_vdatu 
       AND item~matnr IN lr_matnr 



    GROUP BY item~matnr vdatu 
    HAVING SUM( item~netpr ) > 0 
    ORDER BY item~matnr vdatu.
ENDMETHOD.

Once the SAP Gateway code is completed and activated, you have a
service that can send the required sales data to any client that can
make OData requests. Naturally, you’d love to use your own laptop
as one of those clients, so we came up with a little utility class that
can do some basic OData filtering, requesting, and creating of CSV
files on your local computer. This may be useful in many SAP data
retrieval scenarios, since any basic OData service should work:

# Utility is exposed as a class to be instantiated per 
request run
class GatewayRequest(object): 

     def __init__(self, gateway_url='', service_name='', 

entity_set_name='', 

                  user='', password=''): 

        self.gateway_url = gateway_url.strip('/') 

        self.service_name = service_name.strip('/') 

        self.entity_set_name = entity_set_name.strip('/') 

        self.filters = []  
 
        # Basic authentication: a username and password 
base64 encoded   
        # and sent with the OData request. There are many 
flavors of  
        # authentication for available for OData - which is 
just a RESTful  
        # web service - but basic authentication is common 
inside corporate  
        # firewalls. 
        self.set_basic_auth(user, password) 
 
    # Adds a filter to the main set of filters, which means 
our OData   
    # utility can support multiple filters in one request. 
    def add_filter(self, filter_field, filter_option, 



filter_value):  
        # OData supports logical operators like 'eq' for 
equals,   
        # 'ne' for does not equal, 'gt' for greater than, 
'lt' for less  
        # than, 'le' for less than or equal, and 'ge' for 
greater than or   
        # equal. 'eq' is the most common, so if the logical 
operator is   
        # omitted we assume 'eq' 
        if not filter_option: 
            filter_option = 'eq' 
          
        new_filter = [filter_field, filter_option, 

filter_value] 

        self.filters.append(new_filter) 
 
    # Encode the basic authentication parameters to send 
with the request.     
    def set_basic_auth(self, user, password): 
        self.user = user 
        self.password = password 
        string_to_encode = user + ':' + password 
        self.basic_auth =   
             
base64.b64encode(string_to_encode.encode()).decode() 
 
    # OData works through sending HTTP requests with 
particular query   
    # strings attached to the URL. This method sets them up 
properly. 
    def build_request_url(self): 
        self.request_url = self.gateway_url + '/' + 
self.service_name 
        self.request_url += '/' + self.entity_set_name 
          
        filter_string = '' 
          
        if len(self.filters) > 0: 
            filter_string = '?$filter=' 
            for filter in self.filters: 
                filter_string += filter[0] + ' ' + filter[1] 

                filter_string += ' \'' + filter[2] + '\' and 
' 
          



            filter_string = filter_string.rstrip(' and ') 
          
        if not filter_string: 
            self.request_url += '?$format=json'      
        else: 
           self.request_url += filter_string + 
'&$format=json' 
 
    # Perform the actual request, by adding the 
authentication header and  
    # the filtering options to the URL.        
    def perform_request(self): 
        try: 
           self.build_request_url() 
           if self.basic_auth: 
               headers = {'Authorization':'Basic ' + 

self.basic_auth} 

               self.result = requests.get(self.request_url,  

                                          headers=headers) 
           else: 
               self.result = requests.get(self.request_url) 
         except Exception as e: 
             raise Exception(e) 
       
    # Utility function to return a pandas dataframe from the 
results of   
    # the OData request. 
     def get_result_dataframe(self): 
         try: 
             self.perform_request() 

             json_obj = json.loads(self.result.text) 

             json_results = json.dumps(json_obj['d']

['results']) 
             return 
pandas.read_json(json_results).drop('__metadata',axis=1) 
         except Exception as e: 
             raise Exception(e) 
     
    # Utility function to return a basic JSON object as the 
results of  
    # the query. 
     def get_result_json(self): 

         self.perform_request() 



         return json.loads(self.result.text) 
       
    # The utility function we use, to save the results to a 
local .csv 
    def save_result_to_csv(self, file_name): 

        self.get_result_dataframe().to_csv(file_name) 
           
    # A utility to properly parse the dates that are 
returned in a json   
    # request. 
    @staticmethod 
    def odata_date_to_python(date_string): 

         date_string = date_string.replace('/Date(', 

'').replace(')/', '') 

         date_string = date_string[:-3] 
         new_date = 
datetime.datetime.utcfromtimestamp(int(date_string)) 
         return new_date

With the utility class defined, we are ready to perform the request.
You’ll need to replace the code set in italics with your own values.

sales_request = 
GatewayRequest(gateway_url='http://YOUR_SAP_HOST/sap/opu/

                               odata/sap/', 

               entity_set_name='DailyMaterialSalesSet', 

               service_name='ZTEST_MATERIAL_PREDICT01_SRV', 

               user='YOUR_USER', password='YOUR_PASS')  
 
# We added three materials here, but you could add as many 
as you like in this
# syntax 
sales_request.add_filter('Material', 'eq', 'YOUR_MATERIAL1')  

sales_request.add_filter('Material', 'eq', 'YOUR_MATERIAL2')  

sales_request.add_filter('Material', 'eq', 

'AS_MANY_AS_YOU_WANT')  
 
# Note for dates OData requires the below filtering syntax 
# Yes - dates are a little weird 
sales_request.add_filter('ReqDeliveryDate', 'gt',          



                         "datetime'2015-01-01T00:00:00'") 
 
sales_request.save_result_to_csv('D:/Data/Sales.csv')

Step 3: Explore Data

Now that we have our data we can easily read it into Python. We will
need some standard libraries to start with. These are very common,
oft-used libraries:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime

We will use the pandas library to read in the data:

df = pd.read_csv('D:/Data/Sales.csv')

Let’s view our data by taking a look at the first few rows:

df.head()

It should be of no surprise that the data has the same problems we
experienced when reading it into R. In Figure 6-19 we see that there
are columns to be removed, and a date column to be adjusted.



Figure 6-19. Unconverted sales dataframe in Python

We will perform the same functions we did in R but this time in
Python. Those basic steps are:

1. Drop a column

2. Convert the date column to a true date

3. Subset the dataframe by a single material

4. Drop the material column

5. Make the date the index of the dataframe

#Drop the column 'Unnamed'
df = df.drop(['Unnamed: 0'], axis = 1)
#Convert the date column to numeric and take out any 
nonnumeric chars.
df.ReqDeliveryDate = 
pd.to_numeric(df.ReqDeliveryDate.str.replace('[^0-9]', ''))
#Convert the date column to a proper date using to_datetime
df['ReqDeliveryDate'] = 

pd.to_datetime(df['ReqDeliveryDate'], unit='ms')
#Subset the dataframe by the single material 8939
df_8939 = df['Material']==8939

df = df[df_8939]
#Drop the material column



df = df.drop(columns=['Material'])
#make the date column the index
df = df.set_index(['ReqDeliveryDate'])

Let’s take a look at our dataframe again, but this time by doing a
quick plot (which is shown in Figure 6-20):

plt.plot(df)

Figure 6-20. Initial plot of sales in Python

We will then use the statsmodels package in Python to perform a
decomposition of the time series. This is a statistical task that
deconstructs the time series object into several categories or patterns.
These patterns are observed, trend, seasonal, and residual. Residuals
can also be referred to as errors. We will decompose our time series
and plot it (the results are in Figure 6-21):



from statsmodels.tsa.seasonal import seasonal_decompose
result = seasonal_decompose(df, model='multiplicative', freq 

= 52)

result.plot()

This gives us a general view of our time-series data. The Observed
chart gives us an exact representation of what is observed in the data.
The Trend chart shows us what the overall trend of the observations.
Think of this as the smoothing of the observations. The Seasonal
chart highlights if there are any seasonal aspects to the data. If you
observe repeating patterns here there could be seasonality in your
data. Finally, the Residual chart shows the errors between the
observed value and a predicted value.

Figure 6-21. Decomposed charts of our sales data



Step 4: Model Data

Like we did in R, we are now going to create an ARIMA prediction.
This is made easy in Python with the pyramid.arima  package.
Explore the package to understand all the settings that can be made:

from pyramid.arima import auto_arima
step_model = auto_arima(df, start_p=1, start_q=1, 

                           max_p=3, max_q=3, m=12, 

                           start_P=0, seasonal=True, 

                           d=1, D=1, trace=True, 

                           error_action='ignore', 

                           suppress_warnings=True, 

                           stepwise=True) 

 print(step_model.aic())

The log will print as it is running:

Fit ARIMA: order=(1, 1, 1) seasonal_order=(0, 1, 1, 12); 

AIC=21114.204,  

  BIC=21138.271, Fit time=2.342 seconds
.  
.  
.  
Fit ARIMA: order=(1, 1, 2) seasonal_order=(0, 1, 1, 12); 

AIC=21076.593,  

  BIC=21105.474, Fit time=4.335 seconds

Total fit time: 35.598 seconds

The next step is to break our time series into two sets. One for
training and one for testing. We want to train on the majority of our
data and test on the remaining. For our dataset, we have a time series
from 2015-01-05 to 2018-07-21. Therefore, we’ve decided to take the
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range from 2015-01-05 to 2018-04-01 to train against and the
remaining dates to validate against:

train = df.loc['2015-01-05':'2018-04-01']

test = df.loc['2018-04-02':]

The next step is to fit the model to the training data:

step_model.fit(train)

Let’s predict what will come after 2018-04-01 for the number of time
steps in the test set. The number of time steps in the test series is seen
with:

len(test)
73

The command to make the prediction is easy:

future = step_model.predict(n_periods=73)

To see the results of our prediction you can simply type future.
Our future object is an array of predictions made from our training
data. We used 73 periods because we want the length of the
prediction to be exactly as long as the length of our test array. This
way, as you will see later, we can plot them on top of one another and
visualize the accuracy:

array([26912.93298004, 31499.53327771, 31600.12890142, 



25459.90672847, 

        30282.82366396, 27135.66098529, 28756.53431911, 

31096.66619926, 

 … ])

Step 5: Evaluate Model

While this all looks fine now, what does our prediction look like
when charted against the real results of our test dataframe? First we
need to convert our future to a proper dataframe with a column title
“Prediction.”

future = pd.DataFrame(future,index = test.index,columns=

['Prediction'])

Next, we simply concatenate the test and the future together and plot
them, which is made easy using Pandas (the results are shown in
Figure 6-22):

pd.concat([test,future],axis=1).plot()



Figure 6-22. Results of actuals and predictions using ARIMA model

The results of the ARIMA model look like they are somewhat close
to the mean of the sales for the time period. Looking at the
combination of peaks and valleys of the prediction compared to the
actuals shows that the direction of the prediction is in line with the
actuals, just not to the same degree. This means that when the actuals
go up, often the prediction goes up on or near that time period.

To see how the prediction looks against the entirety of the data is just
as simple (the results are in Figure 6-23):

pd.concat([df,future],axis=1).plot()



Figure 6-23. Results of prediction when compared to the original data

The results of our visualization make something clear that was not
previously apparent. When looking at the daily sales over time we
cannot really tell if sales are declining or increasing from 2015 to
2018. The prediction that is plotted here makes it clear that sales
overall are declining. We can see that by the distinct downward trend
of the prediction line.

Summary
In this chapter we have completed the process of identifying a
business need for prediction, extracting data from SAP, exploring the
data, modeling that data, and evaluating the accuracy of that model.
Time-series predictions are a fascinating and multifaceted area of data



science. In our model we simply had univariate time series data; that
is, simply a date and a value. With that we looked for patterns in the
data that might help us make future predictions using standard
ARIMA models in both R and Python. Multivariate time-series
analysis is when there are multiple factors influencing the target
variable. This is often more robust and can take into account features
that affect a target variable (such as sales) across time.

NOTE
Univariate time-series data is simply a single value over time. Think of the
closing price of a stock over time. You could easily employ the techniques here
for stock data and get some interesting results. However, it would not be very
robust and would not take into account countless other factors that affect the
stock price.

Multivariate time-series data is multiple features over time. Let’s use our
closing stock price again. We have the value of stock over time, but we also
have the quarterly company’s earnings from EDGAR (see footnote 2) and social
sentiment analysis from Twitter.  Making stock predictions based on these
multiple features would be more robust, but significantly more difficult. As an
introduction to making predictions, we felt inclined not to go with multivariate
analysis.

Back to our univariate times series data. What if you just have sales
and date and nothing more, like we have here? Are we stuck with just
univariate analysis? Maybe not. Think of what else in that data could
influence sales. Perhaps day of the week? Week of the year? There
could be value within the date variable itself. With R and Python, it is
easy to extract those values. In Python for instance, these commands
give you all the help you need from a date variable:
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df['year'] = df['date'].dt.year

df['month'] = df['date'].dt.month

df['week_of_year'] = df['date'].dt.week

df['day_of_week'] = df['date'].dt.weekofyear

df['day_of_year'] = df['date'].dt.dayofyear

df['day_of_month'] = df['date'].dt.day

In an afternoon’s work, the data scientists made some basic
predictions using SAP data and common tools. They return to Duane
from the SAP team and show him that Big Bonanza can indeed do
predictions on sales data. It is up to him and the business to decide if
the current ARIMA model, either in R or Python, is good enough or
if they need something more accurate and robust. If business leaders
want more accuracy, then a multivariate time-series analysis is likely
in order and perhaps a recursive neural network or a temporal
convolutional network.

1  Time series: a series of data points indexed over time.

2  You may disagree with this sharp distinction between inference and forecasting and
our use of the term prediction. This is a very slippery semantic slope. However, you
should understand the need to make the definition clear for the purposes of teaching.

3  EDGAR: The government’s open source Electronic Data Gathering, Analysis, and
Retrieval system. It uses XBRL (eXtensible Business Reporting Language). Trust us,
it’s a fun rabbit hole. https://www.codeproject.com/Articles/1227765/Parsing-XBRL-
with-Python.

4  The forecast library https://cran.r-project.org/web/packages/forecast/forecast.pdf
is written by Rob J. Hyndaman and contains methods for displaying and analyzing
univariate time series.

5  https://cran.r-project.org/web/packages/tseries/tseries.pdf

6  Fitting an ARIMA model is sometimes referred to as the Box–Jenkins method.

7  https://pypi.org/project/pyramid-arima/

https://www.codeproject.com/Articles/1227765/Parsing-XBRL-with-Python
https://cran.r-project.org/web/packages/forecast/forecast.pdf
https://cran.r-project.org/web/packages/tseries/tseries.pdf
https://pypi.org/project/pyramid-arima/


8  For example, see https://ieeexplore.ieee.org/document/7955659 and
https://www.tandfonline.com/doi/full/10.1080/23322039.2017.1367147.

https://ieeexplore.ieee.org/document/7955659
https://www.tandfonline.com/doi/full/10.1080/23322039.2017.1367147


Chapter 7. Clustering and
Segmentation in R

Big Bonanza Warehouse is at the beginning of a big change: they’re
going to upgrade their current SAP system to S/4HANA.
Furthermore, they’ve decided they will not migrate all of their old
data unless necessary. Each department has been tasked with
identifying its own crucial data. Rod works as a national account rep
and his responsibility is to identify which customers in their system
should be migrated. They have decades of customer data, much of
which is obsolete.

Rod has long wanted to understand his customers better so this
process will be rewarding for him. Which customers are the highest
value? Does this exercise entail a simple calculation of the top N
sales by customer? Is it the frequency of a customer purchase? Maybe
it is a combination of factors. He turns to Duane, his SAP Sales and
Distribution Analyst, for suggestions on how to approach this. Duane,
having read this book, thinks immediately, “This is a task for
clustering and segmentation!”

Clustering is any one of several algorithmic approaches to dividing a
dataset into smaller, meaningful groups. There’s no predetermined
notion of what dimension (or dimensions) best allow that grouping.
Practically speaking, you’ll almost always have some idea what
dimension (or features) you want to analyze. For example, we have



sales data and you want to know customer value. Well, clearly overall
purchase history and dollar value is important. What about the
frequency of a customer ...



Chapter 8. Association Rule
Mining

Amir is the VP of Sales at Big Bonanza Warehouse. The other evening while
shopping for cookies on Amazon he got a little message. “People who ordered
cookies also ordered cookie-holders.” “Cookie-holders? That’s ridiculous.” He
thought. But he clicked on the item anyway. “Cookie-holders are only a buck,
I’ll try one.” A moment later he realized, “I bought something I didn’t intend to
buy. I’m happy with the purchase and the recommendation. How can I do this
for my own sales and customers?”

The next day in the office he called in Duane, the SAP business analyst for
Sales. He explained what he was thinking and wanted to know how they could
do it. “I want to provide sales recommendations for all my retail locations.
When a customer buys a product, I want the system to provide
recommendations for related products.” Duane’s first thought was, “SAP
doesn’t do that.”

Upon talking to Greg and Paul, Duane learns that what Amir wants can be
achieved by using a technique called association rule mining. We intend to take
sales orders from SAP and create associations, or discover the general rules of
patterns in item purchases. We want to know what products are most often
purchased together. Consider groceries: if a customer buys bread and eggs,
what is the likelihood they will buy milk?

However, if you understand that association rule mining employs the rules of
probability, you start to see many more applications:

Laboratory studies



What is the probability of a result based on previous study results? If X and
Y happen in a study, what is the likelihood of Z? In the pharmaceutical
industry, ending a study at the right time can have significant financial
impacts.

Medical diagnoses
Diagnosing a patient is not always an easy process. Understanding the co-
occurrences of symptoms helps healthcare providers make more accurate
diagnoses.

Class schedules
Understanding what classes a student may take can help an organization
accurately use resources and avoid scheduling bottlenecks.

Equipment maintenance
Predicting a malfunction on the manufacturing line can greatly assist in
productivity. What is the probability that a piece of equipment will
malfunction if it has gone through maintenance A, B, and C?

Customer order assistance: as a distinct subset of straight upselling, take into
account that certain products are often bought together for a reason. If a
customer buys hundreds of perfectly square tiles, it is likely they need some
corner or oddly shaped tiles to complete their project. Use association rule
mining to create ways for customer service to guide customers to ensuring their
interactions meet their needs the first time around.

In this chapter, our goal is to create an application that will create a sales order
in SAP and provide the user with product recommendations. To do this we use
SAPUI5, a standard SAP frontend technology.

By now the basic order of operations should be familiar. We will follow much
the same course of action we have with the other chapters, except this time we
will operationalize the results (Figure 8-1). Operationalization of data science
is an important and often overlooked step, which is dependent on your
company’s infrastructure. Perhaps your company uses Azure or Amazon Web
Services heavily. Perhaps they only use on-premise machines. In this chapter,



we will create a locally accessible webservice in R, but the deployment options
will vary depending on you and your company’s infrastructure and preference.

Figure 8-1. Process flow used for finding associations in sales data

Understanding Association Rule Mining
The techniques in association rule mining (ARM) are all about associating
observations with rules—for example, we can associate the observation in our
data X with the rule Y. Unlike sequence mining,  ARM does not care about the
order of the observations. ARM only cares that they occur together. ARM is a
mature and well-known method of discovering associations in large datasets
and it works well with categorical data. There are four main concepts in ARM.
These are support, confidence, lift, and the apriori algorithm.

Support

Support is how frequently the set appears in the data. For example, Figure 8-2
shows that whiskey and beer purchases occur in 10 out of 100 total purchases.
This means a support of 10/100 or 10%.

Support(X to Y) → Transactions containing X and Y / Total transactions

1



Figure 8-2. Associations between whiskey and beer purchases

Confidence

Confidence indicates how often a rule is true. Using the same example as
before, out of all the orders, 10 contain whiskey and beer, 15 contain at least
beer, and 80 contain at least whiskey. So 10 / 10 + 5 is a confidence value of
.67. That is a pretty high confidence value indicating these two items are
bought together. However, confidence can be misleading; items that are simply
frequent will naturally have higher confidence values. Limitations such as this
are overcome by using support, confidence, and lift together.

Confidence(X to Y) → Transactions containing X and Y / Transactions
containing X

Lift

Lift is an indication of how likely something is to be purchased with the
presence of another item, as opposed to how often it is likely to be purchased
independently. In other words, how much does product A lift the likelihood of



product B? Using our example with the lift formula: lift = (10 / 10 + 5 ) /
(80/100). The result is .84. A lift value of near one indicates there is no effect
of one item on the other. A lift value of less than one indicates there could be a
replacement (negative lift) happening. Despite our high confidence from
earlier, there is no lift to the relationship between whiskey and beer. In fact, the
lift is less than one, indicating whiskey might be a replacement for beer or visa
versa:

Lift(X to Y) → Confidence(X to Y) / ((Probability of Y without X) / Total
transactions)

Apriori Algorithm

The apriori algorithm was presented by R. Agrawal and R. Srikant in 1994. It
is a method of finding frequent itemsets in a dataset. It uses prior knowledge of
frequent itemset properties to do this. It is this algorithm in the R arules
library that creates the association rules. We will use this library later in the
chapter, when we analyze the data.

Operationalization Overview
Before we begin creating our application, we need to clearly define our
programming goals. The architecture of our process is not complex, but it is
important to understand the pieces of the process that will bring our vision to
life. Figure 8-3 shows a basic flow of the extraction and transformation, going
from extracting the data through to display in an SAP Fiori (SAPUI5)
application.

http://bit.ly/2ltQ3iX


Figure 8-3. Programs and applications overview

SAP developed SAPUI5 as an HTML5/JavaScript-based web application
development framework. SAP also created a set of design standards called
Fiori that SAPUI5 strives to help developers meet. The reason? The standard
SAP user interface, the decades-old SAP GUI, stinks. Nobody likes to use it.

SAPUI5 helps developers to create applications that responsively scale all the
way from desktop-sized monitor screens to mobile handheld screens. SAPUI5
with Fiori design principles has become commonplace for SAP end users, and
this includes the sales staff at Big Bonanza. We’ll detail one way to use
SAPUI5 to enhance the sales experience and display the recommendations that
we generate from our data science adventure. Data scientist and SAP analyst
readers please note: just like our other brief forays into ABAP, this book is not
intended as an SAPUI5 primer.



Collecting the Data
This business problem requires a process that ultimately creates association
rules around purchases. This is something that would not be done too
frequently, perhaps on a quarterly basis. Our plan is to create a process that we
can update once a quarter and will be the foundation of an API to an SAP
application.

Sales data is easily found in SAP in the VBAK and VBAP tables. All we want
to know is what products are purchased together. In the end, we want
something like Table 8-1, where each record has separate columns for the
individual items sold. The first row represents an order where two items were
sold, the second row an order where four were sold, and so on.

Table 8-1. Flattened product-to-order mapping

item1 item2 item3 item4 item5

ProductA ProductB    

ProductC ProductB ProductE ProductG  

ProductA ProductC    

However, when we select data from the tables in SAP, we end up with Table 8-
2.



Table 8-2. Product-to-order mapping before flattening

Sales Document (VBAK) Sales Material

10001 ProductA

10001 ProductB

10002 ProductC

10002 ProductB

10002 ProductE

10002 ProductG

10003 ProductZ

There are a few things that we need to take into consideration here:

We don’t care about orders with only one item; there is no association
there.

We want our data wide and not long. Recall that we’re aiming for
records that have columns identifying individual items on the order,
not separate records for each item in the order.

We don’t care about the sales order number; it is just used to group
materials.

Flipping back to anomaly detection concepts in Chapter 5, we
determine that any order with more than 25 lines is an anomaly and
simply cut off the table at 25 items.

NOTE
Finding that 25-line cutoff simplifies this step. If we allowed for any number of lines we
would need to dynamically build the internal table in ABAP thereby adding complexity.



We created the simple ABAP program that follows to fulfill our needs. It reads
all sales order items for a specified date range and creates a local CSV file in
the format we want. This will make our code for doing the association rules
super-simple and intuitive. This is a good example of merging various
technologies. We can format and extract from SAP using ABAP, then the
process for R and Python is simplified. By simplifying and designing the
extract from SAP in a thoughtful manner, we turned the R process into three
lines of code:

REPORT zgmf_sales_wide. 
 
************************************************************************
 
 *Data Declarations 
 
************************************************************************
 
 TABLES: vbak, vbap. 
* ty_items is our limited-to-25-items column-per-record structure. 
 TYPES: BEGIN OF ty_items, 
          item1 TYPE matnr, 
          item2 TYPE matnr, 
          item3 TYPE matnr, 
          item4 TYPE matnr, 
          item5 TYPE matnr, 
          item6 TYPE matnr, 
          item7 TYPE matnr, 
          item8 TYPE matnr, 
          item9 TYPE matnr, 
          item10 TYPE matnr, 
          item11 TYPE matnr, 
          item12 TYPE matnr, 
          item13 TYPE matnr, 
          item14 TYPE matnr, 
          item15 TYPE matnr, 
          item16 TYPE matnr, 
          item17 TYPE matnr, 
          item18 TYPE matnr, 
          item19 TYPE matnr, 
          item20 TYPE matnr, 
          item21 TYPE matnr, 
          item22 TYPE matnr, 
          item23 TYPE matnr, 
          item24 TYPE matnr, 
          item25 TYPE matnr, 
        END OF ty_items. 
DATA: lt_items TYPE TABLE OF ty_items, 
      wa_items LIKE LINE OF lt_items. 



TYPES: BEGIN OF ty_base, 
         vbeln TYPE vbeln, 
         matnr TYPE matnr, 
       END OF ty_base. 
DATA: member   TYPE ty_base, 
      members TYPE STANDARD TABLE OF ty_base WITH EMPTY KEY, 
      position TYPE i, 
      xout     TYPE string, 
      iout     TYPE TABLE OF string, 
      l_string TYPE string, 
      t_csv    TYPE truxs_t_text_data, 
      c_csv    TYPE truxs_t_text_data, 
      h_csv    LIKE LINE OF t_csv. 
FIELD-SYMBOLS: <fs_str> TYPE ty_items. 
 
************************************************************************
 
*Selections               ₍ᐢ•ع•ᐢ₎*･ﾟ｡ 
************************************************************************
 
SELECT-OPTIONS: s_auart FOR vbak-auart, "Sales Order Type 
                s_erdat FOR vbak-erdat, "Sales Order Create Date 
                s_pstyv FOR vbap-pstyv. "Sales Order Line Item 
Category 
PARAMETERS: p_lnam TYPE char75 DEFAULT 'C:\temp\'. "Directory to 
save to 
************************************************************************
 
*Start-of-Selection        ₍ᐢ•ع•ᐢ₎*･ﾟ｡ 
************************************************************************
 
 PERFORM get_data. 
 PERFORM write_file. 
************************************************************************
  
* ROUTINES               ₍ᐢ•ع•ᐢ₎*･ﾟ｡ 
************************************************************************
 
FORM get_data.  
* Select all order numbers and materials from VBAK and VBAP  
* based on the selection criteria on the first screen. 
  SELECT vbak~vbeln, vbap~matnr 
      INTO TABLE @DATA(lt_base) 
      FROM vbak JOIN vbap ON vbak~vbeln = vbap~vbeln 
      ##DB_FEATURE_MODE[TABLE_LEN_MAX1] 
          WHERE vbak~auart IN @s_auart 
            AND vbak~erdat IN @s_erdat 
            AND vbap~pstyv IN @s_pstyv 
            GROUP BY vbak~vbeln, vbap~matnr. 
 
*Assign the work area structure to a field-symbol 
  ASSIGN wa_items TO <fs_str>.  
  



*LOOP at the list of orders and materials and group this by order 
number 
  LOOP AT lt_base INTO DATA(wa) GROUP BY wa-vbeln. 
    CLEAR members.  
 
*LOOP at the group (single order number) and put it into the members   
*table. 
    LOOP AT GROUP wa INTO member. 
      members = VALUE #( BASE members ( member ) ). 
    ENDLOOP.  
 
*How big is the members table? If it is not greater than   
*one line then skip it. There is no association for one line orders. 
    DESCRIBE TABLE members LINES DATA(i). 
     IF i > 1. 
       CLEAR: position, <fs_str>. 
       LOOP AT members ASSIGNING FIELD-SYMBOL(<member>).  
 
*We don't want to go over 25 lines on an order. 
        IF position = 25. 
          EXIT. 
         ENDIF. 
         position = position + 1.  
 
*Create a variable for the item from item1 to item25. 
        DATA(item_position) = `ITEM` && position.  
 
*Assign the item (let's say ITEM1) to the field-symbol.   
*This is like a pointer and if it is successful we can   
*move the value into our work area. 
        ASSIGN COMPONENT item_position OF STRUCTURE <fs_str> 
             TO FIELD-SYMBOL(<fs>). 
        IF <fs> IS ASSIGNED. 
           <fs> = <member>-matnr. 
        ENDIF. 
      ENDLOOP.  
 
*Append the work area to our table of items. 
      APPEND <fs_str> TO lt_items. 
    ENDIF. 
  ENDLOOP. 
ENDFORM. 
************************************************************************
 
FORM write_file.  
 
*Create a header. This is not truly necessary, but it doesn't hurt 
  h_csv = 'item1' && `,` && 'item2' && `,` && 'item3' && `,` && 
'item4' && 
  `,` && 'item5' && `,` && 'item6' && `,` && 'item7' && `,` && 
'item8' && 
  `,` && 'item9' && `,` && 'item10' && `,` && 'item11' && `,` && 
'item12' && 



   `,` && 'item13' && `,` && 'item14' && `,` && 'item15' && `,` && 
'item16' && 
 `,` && 'item17' && `,` && 'item18' && `,` && 'item19' && `,` && 
'item20' && 
  `,` && 'item21' && `,` && 'item22' && `,` && 'item23' && `,` && 
'item24' && 
   `,` && 'item25'. 
  
*Loop at the table of items and write it to a work area separated by 
commas 
  LOOP AT lt_items INTO DATA(items). 
    CLEAR xout. 
    DO. 
       ASSIGN COMPONENT sy-index OF STRUCTURE items TO FIELD-
SYMBOL(<csv>). 
       IF sy-subrc <> 0. 
         EXIT. 
       ENDIF. 
       IF sy-index = 1. 
         xout = <csv>. 
       ELSE. 
         l_string = <csv>. 
         xout = xout && `,` && l_string. 
       ENDIF. 
     ENDDO. 
     APPEND xout TO iout. 
   ENDLOOP. 
  
*First append our header to the final csv output table  
*then append all the lines of the csv. 
  APPEND h_csv TO t_csv. 
  APPEND LINES OF iout TO t_csv. 
 
*Use SAPs standard download method to create a file and download it 
locally 
  CALL METHOD cl_gui_frontend_services=>gui_download 
    EXPORTING 
      filename = p_lnam && `sales_wide_` &&   
                 sy-datum && sy-uzeit+0(4) && '.csv ' 
    CHANGING 
       data_tab = t_csv. 
ENDFORM.

Cleaning the Data
We always need to do some cleaning of our data from SAP. However, because
we wrote our own small custom program to extract the data, we took care to do
it in such a way that the data would be pristine. It is important to not make



assumptions about how well we did the extract program, so we’ll read the CSV
file into R Studio and take a look at it (the results are shown in Figure 8-4):

investigate <- read.csv("D:/DataScience/Data/mat.csv")

library(DT)

datatable(head(investigate))

Figure 8-4. Investigating the data from SAP for Sales Data Wide

Things look exactly as we would want them with the exception of the X
column. However, this is something being added by our read.csv function.
We could avoid this using the row.names = NULL parameter. When we
load the data in a different way in our next step, we won’t have this problem.

Analyzing the Data
Using the arules package allows us some amazing results very easily.
Because we have nicely formatted our data using ABAP we can transform it
into a transaction object in R using the following code:

transactions <- read.transactions("D:/DataScience/Data/mat.csv", 

                                  format = "basket", 

                                  sep = ',', 

                                  rm.duplicates=TRUE)

http://bit.ly/2ltQ3iX
http://bit.ly/2lvlPMm


To create rules based on the transactions we loaded, use the following code.
This is where the apriori algorithm (mentioned earlier) comes into play. We
will set the support to be a minimum of .1% and our confidence to be 80%.
The support is low because the dataset is huge and varied. We have over a half
million rows of item sets. A support of .1% is still 500 occurrences. A
confidence of .8 means that 80% of the time the rule is considered to be true.

NOTE
Data science is a combination of business logic, art, and actual machine learning knowhow.
A certain degree of trial and error is needed to properly set the support and confidence
values.

rules_transactions <- apriori(transactions, 
                              parameter = list(supp = 0.001, conf = 
0.8)) 

 rules_transactions <- sort(rules_transactions, 
                           by="confidence", 

                           decreasing=TRUE)

We can see our results with confidence, lift, and support using the following
command:

inspect(head(rules_transactions)) 
 
 
     lhs          rhs     support     confidence lift     count 
 [1] {4614440} => {79353} 0.001040583 1          2.426768 2     
 [2] {4360037} => {79353} 0.001040583 1          2.426768 2     
 [3] {8996481} => {79353} 0.001040583 1          2.426768 2     
 [4] {8709402} => {79353} 0.001040583 1          2.426768 2     
 [5] {8135285} => {79353} 0.001040583 1          2.426768 2     
 [6] {2911738} => {79353} 0.001040583 1          2.426768 2

Lhs stands for lefthand side; rhs stands for righthand side. Items on the right
were frequently purchased with items on the left with the listed support,
confidence, and lift. While our support values are not very high, the amount of
data we have is enough to provide good confidence and lift among our top



values. For instance, line 1 above indicates that when item 4614440 is
purchased there is a 100% confidence that item 79353 is also purchased.
Furthermore, there is a lift of 2.4267 for this relationship. (Remember, a lift
value near 1 indicates there is no effect of one item on the other.)

We have created our association rules; now we will save them as a transaction
object to be used in our operationalization later:

save(rules_transactions, 
     file = "D:/DataScience/Oreily/association_rules.RData")

NOTE
We are going to operationalize this at a local level first and move to a more universal level
later.

Before we operationalize, we want to test what would happen if we analyze a
simple result. Create a simple vector from a dataframe with the top result in it:

dataset <- as.vector(t(c("8135285")))

Now match the rules created with the results of our vector:

matchRules <- subset(rules_transactions, lhs %ain% dataset)

Inspect those rules like we did earlier with the inspect function. We see that
it returns the same values that we had earlier when inspecting the rules
manually:

inspect(matchRules) 
      lhs          rhs     support     confidence lift     count 
 [1] {8135285} => {79353} 0.001040583 1          2.426768 2

Now to create a simple API we need to first create a function from the
following code with the dataset set as an input variable:



subset(rules_transactions, lhs %ain% <input_vector>)

You can create a very quick and simple web API in R Studio using the
plumber library. You need to be on version > 1.2 of R Studio to use some of
the features we will outline here. The first step to creating a web API is to open
a new plumber file using the menu path File → New File → Plumber API, as
shown in Figure 8-5.

Figure 8-5. Creating your first Plumber API

This will give you a base file for plumber with a few examples in it. We will
discard those examples and use the following code:

library(plumber)
#Load the association rules created in the load program
load(file = "D:/DataScience/Oreily/association_rules.RData")
#* Send back the confidence and lift
#* @param input Material Number
#* @get /arm
function(input) { 
  #Convert the input value(s) into a vector.  

https://www.rplumber.io/


  dset <- as.vector(t(c(input))) 
  #Create a subset of rules matching the input 
  match_rules <- subset(rules_transactions, lhs %ain% dset) 
  #Display/Return those values (by default JSON) 
  inspect(match_rules)

}

What this code says in human-speak is, “Take the input received and make it a
vector so we can search with it. Create a new object that is a subset of our
association rules that matched our input with the lhs (lefthand side). Return
that result using the inspect() function.”

The preceding code will render our association rules results in a JSON format
when queried from a browser. The Plumber API is easy to use from R Studio;
simply click on the Run API button in the upper-right corner of the window.

A window will appear that will allow the API to be reviewed and tested. It is
shown in Figure 8-6.



Figure 8-6. Swagger and the Plumber API



Click on the “Try it out” button and enter a material number. When finished
click on the Execute button, as shown in Figure 8-7.

Figure 8-7. Testing the Plumber API with a material number

The results of the web API are displayed in the response section, as shown in
Figure 8-8.



Figure 8-8. Results of the Plumber API call

The results of the API show the following in JSON format:

LHS (antecedent)



RHS (consequent)

Support

Confidence

Lift

This is all data that can be used in an application providing sales
recommendations. We’ve successfully created a web API, but it is restricted to
our local computer. There are many ways to host and publish APIs. This is
largely governed by your company’s environment. Does your company use
Azure, Amazon Web Services, Digital Ocean, or something else? Perhaps there
is no cloud environment at all and an on-premises server is deployed. The
options are too varied to be covered in this little book.

NOTE
Remember: we’re not building an entire mobile app here. This scenario assumes that Big
Bonanza has an existing SAPUI5-based Fiori application, and that Greg, Paul, and Duane
are just sprinkling in some extra logic. All of the changes suggested here are contrived
examples, and while they require knowledge of HTML, JavaScript, and XML they do not
require knowledge of developing full-functioning iOS or Android apps in their native
programming languages.

Fiori

We have an operational, web-accessible point of reference to get at our
Plumber API. As discussed at the beginning of the chapter, Big Bonanza uses
an SAPUI5-based Fiori  application to allow field sales personnel to enter
sales orders via smartphone. Before getting heavily into fun data science
scenarios, Duane from the SAP team had a hand in designing the sales order
entry application. He did a great job simplifying what can be very complex in
the normal desktop SAP GUI down to a couple of screens on mobile.

2

3



To get the field salespeople really pushing those cookie-holder extras, let’s map
out a small enhancement to Duane’s order entry app. We’ll add a screen that
pops up after the sales staff confirms a new order, which will list out the
additional materials that are often purchased together with the order’s items.
The salesperson can then choose to add one or more of those items to the order
by suggesting them to the customer on the spot.

NOTE
Visit https://open.sap.com/ and search “SAPUI5” to learn more about building SAPUI5
applications for the Fiori experience.

SAPUI5 applications follow a common model-view-controller  structure.
“View” files define the layout of the elements on the screen. “Controller” files
define the behavior and logic. Woven through both are references to “models”
that define how the data is stored on the client device for application use. For
our use case, we will modify view files to create a little pop-up screen that
holds the suggested new items. We will create a new model to hold information
about the suggested products. Finally, we will modify controller files to ensure
that the pop-up screen appears at the right time.

Big Bonanza has a very stripped-down UI like Figure 8-9. Just add items to the
last screen after selecting a customer to submit to SAP to create the order.

We’re going to put our recommendation flow into the process where the
salesperson would tap Complete Order. Let’s start with the view files that
govern our buttons.

In the main view file (Table.view.xml, which governs this screen), the SAPUI5
developer has already defined the buttons in the footer. We can quickly check
on that to see where we can hook up our extra logic:

4

https://open.sap.com/


<!-- SNIP! Lots of other application view code --> 
 <footer> 
     <OverflowToolbar> 
         <ToolbarSpacer/> 
         <Button text="Add Product"/> 
      <Button text="Complete Order" press="onOrderPress" 
type="Accept"/> 
     </OverflowToolbar> 
 </footer> 
 <!-- SNIP! Lots of other application view code -->



Figure 8-9. Simplified order entry with ability to
add another product or to complete the order



The press attribute of the Complete Order button tells us what function
(onOrderPress) will be executed when the user taps that button. So let’s
jump into that code, in the Table.controller.js file:

// SNIP! Lots of other application controller code 
 onOrderPress: function (oEvent) { 
     // If the dialog box has never been opened, we initiate it 

     if (!this._oDialog) { 
         var oSuggestionsModel = new JSONModel(); 
         this.getView().setModel(oSuggestionsModel, "suggestions"); 
         this._oDialog = sap.ui.xmlfragment("Table.RecommendDialog", 
this); 
         this._oDialog.setModel(oSuggestionsModel, "suggestions"); 
     } 
      
     // Retrieve the product already entered on the screen, 

     // build a query URL to the Big Bonanza ARM endpoint,  

     // then load that data into an intermediate placeholder, 
ARMModel.  
     var oModel = this.getView().getModel(); 
     var product = 
oModel.getProperty("/ProductCollection/0/ProductId"); 

     var bigBonanzaInternalUrl = "[FILL_IN_YOURS]"; 
     var oARMModel = new JSONModel(); 
     var endpoint = bigBonanzaInternalUrl + "/arm?input=" + product; 
     oARMModel.loadData(endpoint, {}, false); 
      
     // Based on results from the ARM retrieval, create a filter to 
retrieve 
     // the full product information for the recommended products. 
     var armData = oARMModel.getData(); 
     var aFilters = []; 
 
     // The "Filter" object sets up the OData filter for SAPUI5 
     for (var i = 0; i < armData.length; i++) { 
         aFilters.push(new Filter("ProductId", "EQ", 
armData[i].rhs); 

         var finalFilters = new Filter({ 
             filters: aFilters, 
             and: false 
         }); 

     } 
 
     // The base OData model is the OData API that is serving out 
the rest 



     // of the data points of this app. This is the API that houses 
the 
     // "ProductCollection" endpoint, where we can retrieve more 
details 
     // about the recommended data. 
     var baseODataModel = this.getView().getModel(); 
     var that = this; 
     baseODataModel.read("/ProductCollection", { 

         filters: finalFilters, 

         success: function (oData) { 
             // In here, we assign the suggestions to that model and 
open 
             // the dialog box. See the "Table.RecommendDialog" 
listing. 
             var oSuggestionsModel = 
that.getView().getModel("suggestions"); 

             oSuggestionsModel.setData(oData.results); 

             that._oDialog.open(); 

         } 

     });

} 
 // SNIP! Lots of other application controller code.

There’s one more piece to this puzzle. Near the top of the onOrderPress
function, we call out to an XML fragment. This fragment defines the look and
feel of the pop-up dialog that appears (Figure 8-10) after pressing Complete
Order.



Figure 8-10. On mobile phone, the suggestions list
shows over the top of the existing order items list,
and allows for selecting one or multiple items to

add to the sales order.

To set up the suggestion list dialog, create a file called
RecommendDialog.fragment.xml in your SAPUI5 project, and add the



following XML:

<core:FragmentDefinition 
    xmlns="sap.m" 
    xmlns:core="sap.ui.core"> 
    <SelectDialog 
         noDataText="No Products Found" 
         title="Suggested Add-Ons" 
         confirm="handleClose" 
         cancel="handleClose" 
         multiSelect="true" 
         items="{ 
             path: 'suggestions>/' 
         }" > 
         <StandardListItem 
                 title="{suggestions>Description}" 
                 description="{suggestions>ProductId}" 
                 type="Active" /> 
     </SelectDialog> 
 </core:FragmentDefinition>

Summary
With a mid-process prompt for selling associated items, Duane has given Amir
the VP of Sales a powerful tool to prod his sales team to upsell on the spot. We
used sales data gathered from SAP tables in an ABAP program that packed
things nicely into a CSV file. Using R, we analyzed this data looking for three
key factors in association rule mining: support, confidence, and lift.

The arules package gave us a quick way to analyze the raw data for those
three factors. We layered a function on top of it, so as to quickly allow an input
of a product number and an output of 1 to n products that have strong
associations. Using the plumber library in R, we quickly turned that function
into a web-callable API.

Given that sales team members in the field use SAP Fiori apps on their mobile
phones to enter sales orders from customers, we looked at how to quickly adapt
the SAPUI5 codebase of the Fiori application to present a “suggested items”
prompt to users. This gives them one last upsell tool before submitting the



order. Not every customer chooses to add the upsell items—but enough of
them do that it has positively impacted Amir’s sales numbers.

Association rule mining has been around in one way or another for a long time.
Putting it in the hands of SAP users is a fresh take on a mature approach; the
information is right there for the taking!

1  Sequence mining is a type of association rule mining but is not included here. Some things just
can’t make it.

2  We will be providing a follow-up blog on using Digital Ocean as a platform for a public API with R
and plumber.

3  Also recall that SAPUI5 is a web application development framework. SAP’s user experience
capabilities have evolved a great deal in the last four to five years, and SAPUI5 is the leader of
those changes.

4  The model-view-controller structure is one of the oldest, most-used architectures in software
development with graphical user interfaces.

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


Chapter 9. Natural Language
Processing with the Google
Cloud Natural Language API

“How often do consumers cut companies loose because of terrible
service? All the time.”

—Harvard Business Review, “Stop Trying to Delight
Your Customers”

Jeana is the Sr. Director of Customer Service at Big Bonanza
Warehouse. According to the CEO the job is simply: “turn angry
customers into happy customers.” Angry customers have lots of
power to hurt companies, since they can not only stop doing business
but also multiply their effects by voicing their complaints via social
media. Big Bonanza (along with every other company in the world!)
is hyper-sensitive about what customers are saying about them online.

Customers register their complaints through the consumer-facing web
storefront in a contact form designed to gather descriptions of their
issues. Big Bonanza hooks up this contact form directly to SAP
Customer Relationship Management (CRM) to capture these notes
and create trackable complaint documents. After the CRM complaint
is created, Jeana’s team steps in. Her team deals with hundreds of
complaints every day. They make their best effort to react quickly and
provide quality service, but Jeana knows that in the daily pile of

http://bit.ly/2k4jYhh


complaints are customers who will churn away if they do not get
high-quality service, fast.

Duane, the SAP business analyst, also has deep knowledge of CRM.
Jeana pitched him an interesting idea: “I have budget available to
give small gifts or offers to customers who ...



Chapter 10. Conclusion

With this chapter our journey comes to an end. We bid farewell and
wish you the best in your continued travels with data science and
SAP. As a conclusion, we’d like to revisit the original mission, recap
what has been covered in the previous nine chapters, give you some
tips and recommendations, and finally provide ways we can keep in
touch.

Original Mission
We have been promised everything from self-driving cars (which,
despite advancements, have not yet been widely manufactured) to AI
we fall in love with (as depicted in the films Ex Machina and Her).
We are also warned of a grim and desolate future in which we are
replaced in the workforce by our own creations. These juxtaposing
visions undermine the practical value of data science. The field of AI
and data science has encountered a number of winters in its history.
These were periods of marked hype followed by disappointment and
a loss of interest. There is unfortunate speculation that we are
entering, or even currently in, another downturn of interest. We hope
to have shown in this book the immediate value simple machine
learning methods can provide to enterprise data. When used with
SAP data in particular, data science and AI aren’t overhyped—
they’re underdelivered.



What we wanted most to do in this book was to build a bridge
between business analysts and data scientists. Business analysts often
have a clear understanding of their company’s data and business
processes. However, they lack a data science perspective. Data
scientists have clear approaches to modeling and analyzing data.
However, they often lack business process understanding. You’ve
likely seen the popular data science use case example depicted in
Figure 10-1). It is a scenario where machine learning or deep learning
is asked to identify whether an image is of a Chihuahua or a
blueberry muffin. With a scenario like this, it is no wonder business
analysts have a hard time understanding how data science applies to
enterprise data. We hoped to show that data science is more than just
image recognition and Chihuahuas.

NOTE
There is a reason we have no examples of image recognition in this book. While
it is probably the most cited example of data science and AI, it is rarely
necessary in enterprise data.



Figure 10-1. Is it a Chihuahua or blueberry muffin? How does this apply to business?

Recap



Chapter 1: Introduction

We introduced the concept of bridging the gap between enterprise
data and data science. We also explained some of the fundamental
concepts (and joy) of telling stories with data. In this chapter we first
introduced data scientists to SAP concepts and SAP business analysts
to data science concepts.



Chapter 2: Data Science for SAP Professionals

This chapter was for the SAP business analysts and introduced many
data science terms. We explored concepts from machine learning and
deep learning. The idea was to give a basis to the business analysts, a
preview if you will, of what was to come.



Chapter 3: SAP for Data Scientists

Data scientists were the focus audience for this chapter. SAP has a
wealth of data, but what is SAP, what kind of data lives there, and
how can you get it? This chapter provided answers to those questions.



Chapter 4: Exploratory Data Analysis

The fundamental start to exploring data with data science is EDA. In
this chapter, we introduced concepts for looking at SAP data from a
data science perspective. In the end, we modeled our data and failed.
This represents an important discovery—sometimes machine and
deep learning models don’t provide answers to our questions. The
lesson in this chapter was to understand that our investment was
minimal and move on to other data science ideas.

NOTE
We deliberated on showing the failure of data science in a business scenario.
However, we decided in the end, “This is real life,” and left it as an example.



Chapter 5: Anomaly Detection with R and Python

This was a hefty chapter full of a lot of different concepts. We
showed how to extract data using the NetWeaver Gateway, automate
that function using Visual Studio, store the data in a SQL database,
model the data using R and Python, and finally report on the findings
using PowerBI. We showed how all these techniques used in concert
can yield impressive first results when looking for anomalies.



Chapter 6: Prediction with R

The goal of this chapter was to make predictions on sales data. We
created examples of prediction using both R and Python. We again
used the NetWeaver Gateway to extract the data, but this time we
augmented it. However, this was just the beginning and much more
can be done.



Chapter 7: Clustering and Segmentation in R

Customers are an important but often neglected part of SAP data.
This chapter sought to cluster and segment customers based on their
buying habits. We showed how that can be done using a variety of
machine learning techniques such as k-means, k-medoids,
hierarchical clustering, and manual clustering. Telling a good story
about results sometimes gets overlooked, so we showed how R
Markdown can be used to deliver impressive reports.



Chapter 8: Association Rule Mining

In this chapter, we operationalized our data science investigation.
Association rules are a common technique in finding customer
buying patterns. We extracted SAP data using a simple program,
created association rules in R, created an API of those rules, and then
consumed the results in an SAP Fiori application. This illustrated
how easy it is to use Fiori to deliver an operationalized model to the
user. In this case, the operationalized model will likely lead to upsales
when creating sales orders.



Chapter 9: Natural Language Processing with the
Google Cloud Natural Language API

This chapter introduced publicly available Google Cloud APIs to the
business user. We provided a scenario on sentiment analysis that
required very little model programming. Publicly available APIs are
so easy to use they almost seem like cheat codes. As avid developers,
this was a hard chapter to write. We like to code, not just access APIs.
However, from a business perspective, if an API fits the solution,
often the economical choice is to use it.

Tips and Recommendations
If experience has taught us anything, it’s these three principles: be
creative, be practical, and enjoy the ride.

Be Creative

SAP and other forms of enterprise data are often easy to access and
clean. This data is a goldmine. Business analysts who understand the
basics of data science are in a great position to leverage this data.
When receiving business requirements or project requests, think of
the examples in this book and try and apply them to your situation.
The business won’t ask you for something to detect anomalies or to
create association rules. You are the bridge. Innovative thinking about
data and data science will lead you to rewarding solutions.

Be Practical



“If you build it...they will come.” This is a common belief among
data science consulting firms. In order to do data science you need a
Hadoop cluster (perhaps a few), Spark, an ingestion engine, 17 R
programmers, and a director with a doctorate in business analytics.
We’ve seen companies spend millions on this thinking and end up
with nothing. What do you need to plant a data science seed at your
company? You need a computer, you need a programming language
such as R or Python, you need to understand your data, and you need
to be innovative. Data science is rewarding and fun. Don’t let it get
bogged down on its own infrastructure and buzzwords. You may need
Hadoop later, you may want Spark or Cassandra later; cross that
bridge when you get to it. For now, be practical and use tools that you
already have.

Enjoy the Ride

Data science is challenging and rewarding beyond anything we’ve
done in IT in our combined 40 years. Gravitate toward an aspect that
you find appealing: association rule mining, anomaly detection,
forecasting and prediction, or even deep neural network modeling.
For us, nature-inspired algorithms are particularly appealing. We
hope you have as much fun as we’ve had!

Stay in Touch
This is the beginning, not the end of our journey. We will follow up
with blogs to augment this book...we’ve already begun. What kind of
ideas do you have for your data? Has this book led you on a



tangential journey you’d like to share? Is there something that is yet
unclear or are you stuck? Well, you’re on your own now. Good luck.

Just kidding. We are always available and truly look forward to
hearing from you. You can reach us through any of the following
means:

Greg

Email: gregfoss@bluedieseldata.com

Twitter: @bluedieseldata

LinkedIn: https://www.linkedin.com/in/greg-foss

Paul

Email: paul@paulmodderman.com

Twitter: @PaulModderman

LinkedIn: https://www.linkedin.com/in/paulmodderman/

mailto:gregfoss@bluedieseldata.com
https://www.linkedin.com/in/greg-foss
mailto:paul@paulmodderman.com
https://www.linkedin.com/in/paulmodderman/
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Colophon

The animal on the cover of Practical Data Science with SAP is the
mouflon (Ovis orientalis orientalis). Scientists believe that the
mouflon is the ancestor of all currently domesticated sheep breeds.
The mouflon’s range covers the mountains of modern Iran, Iraq,
Armenia, and the Caucasus. Domestication began on Corsica,
Cyprus, and other Mediterranean islands during the Neolithic period.
It has also been introduced into Europe and the Americas, including
Hawaii.

The mouflon ram has large horns that form an almost complete circle.
Individual ewes may have small, curved horns, but most ewes are
polled. Unlike many other sheep breeds, the mouflon doesn’t grow
long wool. Its coat is short and dark brown, with lighter patches on
the animal’s belly and sides. It stands about 3 feet at the shoulder and
weighs up to 110 pounds.

Like similar endangered sheep breeds, the mouflon has been the
subject of experimental cloning. Scientists in Italy first cloned a
mouflon in 2001.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The cover illustration is by Karen Montgomery, based on a black and
white engraving from Lydekker’s Royal Natural History. The cover
fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe



Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.
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